- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Fabien Perdu; Philippe Azaïs;Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working in an electrolyte based on potassium salt. Overcoming the inherent potassium problems (irreversible capacity, extensive volume expansion, dendrites formation), the non-reproducibility of the results was a major obstacle to the development of this KIC technology. To remedy this, the development of an adequate formation protocol was necessary. However, this revealed a cell-swelling phenomenon, a well-known issue whether for supercapacitors or Li-ion batteries. This phenomenon in the case of the KIC technology has been investigated through constant voltage (CV) tests and volume measurements. The responsible phenomena seem to be the solid electrolyte interphase (SEI) formation at the negative electrode during the first use of the system and the perpetual decomposition of the electrolyte solvent at high voltage. Thanks to these results, a proper formation protocol for KICs, which offers good energy density (14 Wh·kgelectrochemical core−1) with an excellent stability at fast charging rate, was developed.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Fabien Perdu; Philippe Azaïs;Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working in an electrolyte based on potassium salt. Overcoming the inherent potassium problems (irreversible capacity, extensive volume expansion, dendrites formation), the non-reproducibility of the results was a major obstacle to the development of this KIC technology. To remedy this, the development of an adequate formation protocol was necessary. However, this revealed a cell-swelling phenomenon, a well-known issue whether for supercapacitors or Li-ion batteries. This phenomenon in the case of the KIC technology has been investigated through constant voltage (CV) tests and volume measurements. The responsible phenomena seem to be the solid electrolyte interphase (SEI) formation at the negative electrode during the first use of the system and the perpetual decomposition of the electrolyte solvent at high voltage. Thanks to these results, a proper formation protocol for KICs, which offers good energy density (14 Wh·kgelectrochemical core−1) with an excellent stability at fast charging rate, was developed.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Royal Society of Chemistry (RSC) Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Eric De Vito; Adrien Boulineau; Fabien Perdu; Philippe Azaïs;doi: 10.1039/d3se00594a
A correlation between the evolution of the KF content in the SEI and the evolution of cycling performance of the non-aqueous potassium-ion hybrid supercapacitor (KIC).
Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Royal Society of Chemistry (RSC) Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Eric De Vito; Adrien Boulineau; Fabien Perdu; Philippe Azaïs;doi: 10.1039/d3se00594a
A correlation between the evolution of the KF content in the SEI and the evolution of cycling performance of the non-aqueous potassium-ion hybrid supercapacitor (KIC).
Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Pierre Kuntz; Loïc Lonardoni; Sylvie Genies; Olivier Raccurt; Philippe Azaïs;The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which can cause a car fire in the case of propagation in the battery pack. Today, standards describing safety compliance tests, which are a prerequisite for marketing Li-ion cells, are carried out on fresh cells only. It is therefore important to carry out research into the impact of cell aging on battery safety behavior in order to ensure security throughout the life of the battery, from manufacturing to recycling. In this article, the impact of Li-ion cell aging on safety is studied. Three commercial 18,650 cells with high-power and high-energy designs were aged using a Battery Electric Vehicle (BEV) aging profile in accordance with the International Electrotechnical Commission standard IEC 62-660. Several thermal (Accelerating Rate Calorimetry—ARC) and standardized safety (short-circuit, overcharge) tests were performed on fresh and aged cells. This study highlights the impact of aging on safety by comparing the safety behavior of fresh and aged cells with their aging conditions and the degradation mechanisms involved.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Pierre Kuntz; Loïc Lonardoni; Sylvie Genies; Olivier Raccurt; Philippe Azaïs;The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which can cause a car fire in the case of propagation in the battery pack. Today, standards describing safety compliance tests, which are a prerequisite for marketing Li-ion cells, are carried out on fresh cells only. It is therefore important to carry out research into the impact of cell aging on battery safety behavior in order to ensure security throughout the life of the battery, from manufacturing to recycling. In this article, the impact of Li-ion cell aging on safety is studied. Three commercial 18,650 cells with high-power and high-energy designs were aged using a Battery Electric Vehicle (BEV) aging profile in accordance with the International Electrotechnical Commission standard IEC 62-660. Several thermal (Accelerating Rate Calorimetry—ARC) and standardized safety (short-circuit, overcharge) tests were performed on fresh and aged cells. This study highlights the impact of aging on safety by comparing the safety behavior of fresh and aged cells with their aging conditions and the degradation mechanisms involved.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Elsevier BV Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F.;In order to understand what causes supercapacitors ageing in an organic electrolyte (tetraethylammonium tetrafluoroborate – Et4NBF4 – 1 mol L−1 in acetonitrile), the activated carbon electrodes were characterized before and after prolonged floating (4000–7000 h) at an imposed voltage of 2.5 V. After ageing, the positive and negative electrodes were extensively washed with pure acetonitrile in neutral atmosphere to eliminate the physisorbed species. Then, the carbon materials were dried and transferred without any contact with air to be studied by XPS, 19F NMR, 11B NMR and 23Na NMR. Decomposition products have been found in the electrodes after ageing. The amount of products depends on the kind of activated carbon and electrode polarity, which suggests redox reactions of the electrolyte with the active surface functionality. Nitrogen adsorption measurements at 77 K on the used electrodes showed a decrease of accessible porosity, due to trapping of the decomposition products in the pores. Hence, the evolution of the supercapacitor performance with time of operation, i.e. the capacity decrease and the resistance increase, are due to the decomposition of the organic electrolyte on the active surface of the carbon substrate, forming products which block a part of porosity. The concentration of surface groups and their nature were found to have an important influence on the performance fading of supercapacitors.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu353 citations 353 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Elsevier BV Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F.;In order to understand what causes supercapacitors ageing in an organic electrolyte (tetraethylammonium tetrafluoroborate – Et4NBF4 – 1 mol L−1 in acetonitrile), the activated carbon electrodes were characterized before and after prolonged floating (4000–7000 h) at an imposed voltage of 2.5 V. After ageing, the positive and negative electrodes were extensively washed with pure acetonitrile in neutral atmosphere to eliminate the physisorbed species. Then, the carbon materials were dried and transferred without any contact with air to be studied by XPS, 19F NMR, 11B NMR and 23Na NMR. Decomposition products have been found in the electrodes after ageing. The amount of products depends on the kind of activated carbon and electrode polarity, which suggests redox reactions of the electrolyte with the active surface functionality. Nitrogen adsorption measurements at 77 K on the used electrodes showed a decrease of accessible porosity, due to trapping of the decomposition products in the pores. Hence, the evolution of the supercapacitor performance with time of operation, i.e. the capacity decrease and the resistance increase, are due to the decomposition of the organic electrolyte on the active surface of the carbon substrate, forming products which block a part of porosity. The concentration of surface groups and their nature were found to have an important influence on the performance fading of supercapacitors.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu353 citations 353 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Germany, FrancePublisher:MDPI AG Funded by:EC | TEESMATEC| TEESMATKuntz, Pierre; Raccurt, Olivier; Azaïs, Philippe; Richter, Karsten; Waldmann, Thomas; Wohlfahrt-Mehrens, Margret; Bardet, Michel; Buzlukov, Anton; Genies, Sylvie;Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Germany, FrancePublisher:MDPI AG Funded by:EC | TEESMATEC| TEESMATKuntz, Pierre; Raccurt, Olivier; Azaïs, Philippe; Richter, Karsten; Waldmann, Thomas; Wohlfahrt-Mehrens, Margret; Bardet, Michel; Buzlukov, Anton; Genies, Sylvie;Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSAuthors: Marc Haber; Philippe Azaïs; Sylvie Genies; Olivier Raccurt;Having clear insights of the stress factors that the electric vehicle (EV) batteriesencounter during their service lifetime is crucial for more reliable ageing testing andmodelling. Since the first deployment of Li-ion battery based EV, numerous drivingcampaigns with field data were published. The goal of this article is to gather, assessand analyse them in order to quantify the stress factors depending on the EV type. Thetargeted stress factors are the temperature of the cells, the discharging and chargingrates, as well as the SOC ranges. 228 million km of driving and 7.8 million trips worthof data for over 37,000 EV were investigated. Along with this literature enquiry, datafrom an EV in which cells' temperature was monitored for driving, charging andparking conditions, complemented the analysis. For each stress factor, results werecollected, homogenised and compared with each other in order to draw conclusions.Finally, a Risk Probabilistic Number (RPN) was used to evaluate the stress factors withrespect to their impact on the ageing of Li-ion batteries, considering a central Europeanweather. The most critical stress factors for BEV cells are cycling at high mid-SOCregions and high SOC idle times. Concerning HEV cells, high power cycling at mid-SOC regions is the most critical stress, and no stresses were identified during idletimes. PHEV cells' most critical stress factors are large DOD cycling and highcharge/discharge power. Mild and low temperatures are found to be the most commonin such weathers. The RPN analysis serves as a guide for parametrizing and designingreliable accelerated ageing testing on Li-ion batteries depending on their application. International audience
HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSAuthors: Marc Haber; Philippe Azaïs; Sylvie Genies; Olivier Raccurt;Having clear insights of the stress factors that the electric vehicle (EV) batteriesencounter during their service lifetime is crucial for more reliable ageing testing andmodelling. Since the first deployment of Li-ion battery based EV, numerous drivingcampaigns with field data were published. The goal of this article is to gather, assessand analyse them in order to quantify the stress factors depending on the EV type. Thetargeted stress factors are the temperature of the cells, the discharging and chargingrates, as well as the SOC ranges. 228 million km of driving and 7.8 million trips worthof data for over 37,000 EV were investigated. Along with this literature enquiry, datafrom an EV in which cells' temperature was monitored for driving, charging andparking conditions, complemented the analysis. For each stress factor, results werecollected, homogenised and compared with each other in order to draw conclusions.Finally, a Risk Probabilistic Number (RPN) was used to evaluate the stress factors withrespect to their impact on the ageing of Li-ion batteries, considering a central Europeanweather. The most critical stress factors for BEV cells are cycling at high mid-SOCregions and high SOC idle times. Concerning HEV cells, high power cycling at mid-SOC regions is the most critical stress, and no stresses were identified during idletimes. PHEV cells' most critical stress factors are large DOD cycling and highcharge/discharge power. Mild and low temperatures are found to be the most commonin such weathers. The RPN analysis serves as a guide for parametrizing and designingreliable accelerated ageing testing on Li-ion batteries depending on their application. International audience
HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Fabien Perdu; Philippe Azaïs;Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working in an electrolyte based on potassium salt. Overcoming the inherent potassium problems (irreversible capacity, extensive volume expansion, dendrites formation), the non-reproducibility of the results was a major obstacle to the development of this KIC technology. To remedy this, the development of an adequate formation protocol was necessary. However, this revealed a cell-swelling phenomenon, a well-known issue whether for supercapacitors or Li-ion batteries. This phenomenon in the case of the KIC technology has been investigated through constant voltage (CV) tests and volume measurements. The responsible phenomena seem to be the solid electrolyte interphase (SEI) formation at the negative electrode during the first use of the system and the perpetual decomposition of the electrolyte solvent at high voltage. Thanks to these results, a proper formation protocol for KICs, which offers good energy density (14 Wh·kgelectrochemical core−1) with an excellent stability at fast charging rate, was developed.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Fabien Perdu; Philippe Azaïs;Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working in an electrolyte based on potassium salt. Overcoming the inherent potassium problems (irreversible capacity, extensive volume expansion, dendrites formation), the non-reproducibility of the results was a major obstacle to the development of this KIC technology. To remedy this, the development of an adequate formation protocol was necessary. However, this revealed a cell-swelling phenomenon, a well-known issue whether for supercapacitors or Li-ion batteries. This phenomenon in the case of the KIC technology has been investigated through constant voltage (CV) tests and volume measurements. The responsible phenomena seem to be the solid electrolyte interphase (SEI) formation at the negative electrode during the first use of the system and the perpetual decomposition of the electrolyte solvent at high voltage. Thanks to these results, a proper formation protocol for KICs, which offers good energy density (14 Wh·kgelectrochemical core−1) with an excellent stability at fast charging rate, was developed.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/10/135/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03907561Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8100135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Royal Society of Chemistry (RSC) Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Eric De Vito; Adrien Boulineau; Fabien Perdu; Philippe Azaïs;doi: 10.1039/d3se00594a
A correlation between the evolution of the KF content in the SEI and the evolution of cycling performance of the non-aqueous potassium-ion hybrid supercapacitor (KIC).
Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Royal Society of Chemistry (RSC) Marie-Eve Yvenat; Benoit Chavillon; Eric Mayousse; Eric De Vito; Adrien Boulineau; Fabien Perdu; Philippe Azaïs;doi: 10.1039/d3se00594a
A correlation between the evolution of the KF content in the SEI and the evolution of cycling performance of the non-aqueous potassium-ion hybrid supercapacitor (KIC).
Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00594a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Pierre Kuntz; Loïc Lonardoni; Sylvie Genies; Olivier Raccurt; Philippe Azaïs;The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which can cause a car fire in the case of propagation in the battery pack. Today, standards describing safety compliance tests, which are a prerequisite for marketing Li-ion cells, are carried out on fresh cells only. It is therefore important to carry out research into the impact of cell aging on battery safety behavior in order to ensure security throughout the life of the battery, from manufacturing to recycling. In this article, the impact of Li-ion cell aging on safety is studied. Three commercial 18,650 cells with high-power and high-energy designs were aged using a Battery Electric Vehicle (BEV) aging profile in accordance with the International Electrotechnical Commission standard IEC 62-660. Several thermal (Accelerating Rate Calorimetry—ARC) and standardized safety (short-circuit, overcharge) tests were performed on fresh and aged cells. This study highlights the impact of aging on safety by comparing the safety behavior of fresh and aged cells with their aging conditions and the degradation mechanisms involved.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Pierre Kuntz; Loïc Lonardoni; Sylvie Genies; Olivier Raccurt; Philippe Azaïs;The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which can cause a car fire in the case of propagation in the battery pack. Today, standards describing safety compliance tests, which are a prerequisite for marketing Li-ion cells, are carried out on fresh cells only. It is therefore important to carry out research into the impact of cell aging on battery safety behavior in order to ensure security throughout the life of the battery, from manufacturing to recycling. In this article, the impact of Li-ion cell aging on safety is studied. Three commercial 18,650 cells with high-power and high-energy designs were aged using a Battery Electric Vehicle (BEV) aging profile in accordance with the International Electrotechnical Commission standard IEC 62-660. Several thermal (Accelerating Rate Calorimetry—ARC) and standardized safety (short-circuit, overcharge) tests were performed on fresh and aged cells. This study highlights the impact of aging on safety by comparing the safety behavior of fresh and aged cells with their aging conditions and the degradation mechanisms involved.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/8/427/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/4/68/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Elsevier BV Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F.;In order to understand what causes supercapacitors ageing in an organic electrolyte (tetraethylammonium tetrafluoroborate – Et4NBF4 – 1 mol L−1 in acetonitrile), the activated carbon electrodes were characterized before and after prolonged floating (4000–7000 h) at an imposed voltage of 2.5 V. After ageing, the positive and negative electrodes were extensively washed with pure acetonitrile in neutral atmosphere to eliminate the physisorbed species. Then, the carbon materials were dried and transferred without any contact with air to be studied by XPS, 19F NMR, 11B NMR and 23Na NMR. Decomposition products have been found in the electrodes after ageing. The amount of products depends on the kind of activated carbon and electrode polarity, which suggests redox reactions of the electrolyte with the active surface functionality. Nitrogen adsorption measurements at 77 K on the used electrodes showed a decrease of accessible porosity, due to trapping of the decomposition products in the pores. Hence, the evolution of the supercapacitor performance with time of operation, i.e. the capacity decrease and the resistance increase, are due to the decomposition of the organic electrolyte on the active surface of the carbon substrate, forming products which block a part of porosity. The concentration of surface groups and their nature were found to have an important influence on the performance fading of supercapacitors.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu353 citations 353 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Elsevier BV Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F.;In order to understand what causes supercapacitors ageing in an organic electrolyte (tetraethylammonium tetrafluoroborate – Et4NBF4 – 1 mol L−1 in acetonitrile), the activated carbon electrodes were characterized before and after prolonged floating (4000–7000 h) at an imposed voltage of 2.5 V. After ageing, the positive and negative electrodes were extensively washed with pure acetonitrile in neutral atmosphere to eliminate the physisorbed species. Then, the carbon materials were dried and transferred without any contact with air to be studied by XPS, 19F NMR, 11B NMR and 23Na NMR. Decomposition products have been found in the electrodes after ageing. The amount of products depends on the kind of activated carbon and electrode polarity, which suggests redox reactions of the electrolyte with the active surface functionality. Nitrogen adsorption measurements at 77 K on the used electrodes showed a decrease of accessible porosity, due to trapping of the decomposition products in the pores. Hence, the evolution of the supercapacitor performance with time of operation, i.e. the capacity decrease and the resistance increase, are due to the decomposition of the organic electrolyte on the active surface of the carbon substrate, forming products which block a part of porosity. The concentration of surface groups and their nature were found to have an important influence on the performance fading of supercapacitors.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu353 citations 353 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2007.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Germany, FrancePublisher:MDPI AG Funded by:EC | TEESMATEC| TEESMATKuntz, Pierre; Raccurt, Olivier; Azaïs, Philippe; Richter, Karsten; Waldmann, Thomas; Wohlfahrt-Mehrens, Margret; Bardet, Michel; Buzlukov, Anton; Genies, Sylvie;Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Germany, FrancePublisher:MDPI AG Funded by:EC | TEESMATEC| TEESMATKuntz, Pierre; Raccurt, Olivier; Azaïs, Philippe; Richter, Karsten; Waldmann, Thomas; Wohlfahrt-Mehrens, Margret; Bardet, Michel; Buzlukov, Anton; Genies, Sylvie;Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade.
Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2313-0105/7/3/48/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/7/3/48/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSAuthors: Marc Haber; Philippe Azaïs; Sylvie Genies; Olivier Raccurt;Having clear insights of the stress factors that the electric vehicle (EV) batteriesencounter during their service lifetime is crucial for more reliable ageing testing andmodelling. Since the first deployment of Li-ion battery based EV, numerous drivingcampaigns with field data were published. The goal of this article is to gather, assessand analyse them in order to quantify the stress factors depending on the EV type. Thetargeted stress factors are the temperature of the cells, the discharging and chargingrates, as well as the SOC ranges. 228 million km of driving and 7.8 million trips worthof data for over 37,000 EV were investigated. Along with this literature enquiry, datafrom an EV in which cells' temperature was monitored for driving, charging andparking conditions, complemented the analysis. For each stress factor, results werecollected, homogenised and compared with each other in order to draw conclusions.Finally, a Risk Probabilistic Number (RPN) was used to evaluate the stress factors withrespect to their impact on the ageing of Li-ion batteries, considering a central Europeanweather. The most critical stress factors for BEV cells are cycling at high mid-SOCregions and high SOC idle times. Concerning HEV cells, high power cycling at mid-SOC regions is the most critical stress, and no stresses were identified during idletimes. PHEV cells' most critical stress factors are large DOD cycling and highcharge/discharge power. Mild and low temperatures are found to be the most commonin such weathers. The RPN analysis serves as a guide for parametrizing and designingreliable accelerated ageing testing on Li-ion batteries depending on their application. International audience
HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSAuthors: Marc Haber; Philippe Azaïs; Sylvie Genies; Olivier Raccurt;Having clear insights of the stress factors that the electric vehicle (EV) batteriesencounter during their service lifetime is crucial for more reliable ageing testing andmodelling. Since the first deployment of Li-ion battery based EV, numerous drivingcampaigns with field data were published. The goal of this article is to gather, assessand analyse them in order to quantify the stress factors depending on the EV type. Thetargeted stress factors are the temperature of the cells, the discharging and chargingrates, as well as the SOC ranges. 228 million km of driving and 7.8 million trips worthof data for over 37,000 EV were investigated. Along with this literature enquiry, datafrom an EV in which cells' temperature was monitored for driving, charging andparking conditions, complemented the analysis. For each stress factor, results werecollected, homogenised and compared with each other in order to draw conclusions.Finally, a Risk Probabilistic Number (RPN) was used to evaluate the stress factors withrespect to their impact on the ageing of Li-ion batteries, considering a central Europeanweather. The most critical stress factors for BEV cells are cycling at high mid-SOCregions and high SOC idle times. Concerning HEV cells, high power cycling at mid-SOC regions is the most critical stress, and no stresses were identified during idletimes. PHEV cells' most critical stress factors are large DOD cycling and highcharge/discharge power. Mild and low temperatures are found to be the most commonin such weathers. The RPN analysis serves as a guide for parametrizing and designingreliable accelerated ageing testing on Li-ion batteries depending on their application. International audience
HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL Descartes arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu