- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Lin Lin; Xin Guan; Yu Peng; Ning Wang; Sabita Maharjan; Tomoaki Ohtsuki;With the high penetration of large-scale distributed renewable energy generation, the power system is facing enormous challenges in terms of the inherent uncertainty of power generation of renewable energy resources. In this regard, virtual power plants (VPPs) can play a crucial role in integrating a large number of distributed generation units (DGs) more effectively to improve the stability of the power systems. Due to the uncertainty and nonlinear characteristics of DGs, reliable economic dispatch in VPPs requires timely and reliable communication between DGs, and between the generation side and the load side. The online economic dispatch optimizes the cost of VPPs. In this article, we propose a deep reinforcement learning (DRL) algorithm for the optimal online economic dispatch strategy in VPPs. By utilizing DRL, our proposed algorithm reduced the computational complexity while also incorporating large and continuous state space due to the stochastic characteristics of distributed power generation. We further design an edge computing framework to handle the stochastic and large-state space characteristics of VPPs. The DRL-based real-time economic dispatch algorithm is executed online. We utilize real meteorological and load data to analyze and validate the performance of our proposed algorithm. The experimental results show that our proposed DRL-based algorithm can successfully learn the characteristics of DGs and industrial user demands. It can learn to choose actions to minimize the cost of VPPs. Compared with the deterministic policy gradient algorithm and DDPG, our proposed method has lower time complexity.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/jiot.2...Article . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jiot.2020.2966232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/jiot.2...Article . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jiot.2020.2966232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yongnan Liu; Xin Guan; Abdulhameed Alelaiwi; Jun Li; Mohammad Mehedi Hassan; Di Sun; Tomoaki Ohtsuki;Abstract Due to environment-friendliness, renewable energy like solar power and wind power is more and more introduced to energy systems all over the world. Simultaneously, high penetrations of wind and solar generation also have brought severe curtailment of wind and solar. How to alleviate curtailment of wind and solar is a crucial problem in evaluating accommodation capability of renewable energy, which reflects the extent of utilization of renewable energy and economic benefits. The uncertainty of renewable energy brings challenges to precisely describe renewable generation, which leads to difficulty in designing effective mechanisms for accommodation capability of renewable energy. Existing work suffers from high computation overhead from frequently updated data, and low precision of describing renewable energy, which leads to less effective policies for renewable energy accommodation and underestimated accommodation capability. To make the most of renewable energy, an algorithm AccCap-DRL based on deep reinforcement learning is proposed. AccCap-DRL partitions a distribution into segments by time intervals, employs WGAN to describe distributions of renewable energy data, and employs DDPG to obtain approximate policies for renewable energy accommodation in different scenarios. Simulation results from real power generation and users’ demand data show high effectiveness of the proposed algorithm, and high efficiency of evaluating accommodation capability.
Future Generation Co... arrow_drop_down Future Generation Computer SystemsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Future Generation Co... arrow_drop_down Future Generation Computer SystemsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Lin Lin; Xin Guan; Yu Peng; Ning Wang; Sabita Maharjan; Tomoaki Ohtsuki;With the high penetration of large-scale distributed renewable energy generation, the power system is facing enormous challenges in terms of the inherent uncertainty of power generation of renewable energy resources. In this regard, virtual power plants (VPPs) can play a crucial role in integrating a large number of distributed generation units (DGs) more effectively to improve the stability of the power systems. Due to the uncertainty and nonlinear characteristics of DGs, reliable economic dispatch in VPPs requires timely and reliable communication between DGs, and between the generation side and the load side. The online economic dispatch optimizes the cost of VPPs. In this article, we propose a deep reinforcement learning (DRL) algorithm for the optimal online economic dispatch strategy in VPPs. By utilizing DRL, our proposed algorithm reduced the computational complexity while also incorporating large and continuous state space due to the stochastic characteristics of distributed power generation. We further design an edge computing framework to handle the stochastic and large-state space characteristics of VPPs. The DRL-based real-time economic dispatch algorithm is executed online. We utilize real meteorological and load data to analyze and validate the performance of our proposed algorithm. The experimental results show that our proposed DRL-based algorithm can successfully learn the characteristics of DGs and industrial user demands. It can learn to choose actions to minimize the cost of VPPs. Compared with the deterministic policy gradient algorithm and DDPG, our proposed method has lower time complexity.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/jiot.2...Article . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jiot.2020.2966232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/jiot.2...Article . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jiot.2020.2966232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yongnan Liu; Xin Guan; Abdulhameed Alelaiwi; Jun Li; Mohammad Mehedi Hassan; Di Sun; Tomoaki Ohtsuki;Abstract Due to environment-friendliness, renewable energy like solar power and wind power is more and more introduced to energy systems all over the world. Simultaneously, high penetrations of wind and solar generation also have brought severe curtailment of wind and solar. How to alleviate curtailment of wind and solar is a crucial problem in evaluating accommodation capability of renewable energy, which reflects the extent of utilization of renewable energy and economic benefits. The uncertainty of renewable energy brings challenges to precisely describe renewable generation, which leads to difficulty in designing effective mechanisms for accommodation capability of renewable energy. Existing work suffers from high computation overhead from frequently updated data, and low precision of describing renewable energy, which leads to less effective policies for renewable energy accommodation and underestimated accommodation capability. To make the most of renewable energy, an algorithm AccCap-DRL based on deep reinforcement learning is proposed. AccCap-DRL partitions a distribution into segments by time intervals, employs WGAN to describe distributions of renewable energy data, and employs DDPG to obtain approximate policies for renewable energy accommodation in different scenarios. Simulation results from real power generation and users’ demand data show high effectiveness of the proposed algorithm, and high efficiency of evaluating accommodation capability.
Future Generation Co... arrow_drop_down Future Generation Computer SystemsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Future Generation Co... arrow_drop_down Future Generation Computer SystemsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu