- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Krystian Woźniak; Beata Kurc; Łukasz Rymaniak; Natalia Szymlet; Piotr Pielecha; Jakub Sobczak;doi: 10.3390/en17235904
This paper investigates the application of high-capacity supercapacitors in railway systems, with a particular focus on their role in energy recovery during braking processes. The study highlights the potential for significant energy savings by capturing and storing energy generated through electrodynamic braking. Experimental measurements conducted on a diesel–electric multiple unit revealed that approximately 28.3% to 30.5% of the energy could be recovered from the traction network, regardless of the type of drive used—whether electric or diesel. This research also explores the integration of starch-based carbon as an electrode material in supercapacitors, offering an innovative, sustainable alternative to traditional graphite or graphene electrodes. The carbon material was obtained through a simple carbonization process, with experimental results demonstrating a material capacity of approximately 130 F/g. To quantify the energy recovery, calculations were made regarding the mass and power requirements of the supercapacitors. For the tested vehicle, it was estimated that around 28.7% of the energy could be recovered during the braking process. To store 15 kWh of energy, the total mass of the capacitors required is approximately 245.1 kg. The study emphasizes the importance of increasing voltage levels in railway systems, which can enhance energy transmission and utilization efficiency. Additionally, the paper discusses the necessity of controlled energy discharge, allowing for the flexible management of energy release to meet the varying power demands of trains. By integrating high-voltage supercapacitors and advanced materials like starch-based carbon, this research paves the way for more sustainable and efficient railway systems, contributing to the industry’s goals of reducing emissions and improving operational performance. The findings underscore the crucial role of these capacitors in modernizing railway infrastructure and promoting environmentally responsible transportation solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17235904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17235904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Piotr Pryciński; Róża Wawryszczuk; Jarosław Korzeb; Piotr Pielecha;doi: 10.3390/en16124541
Recently, many activities have been undertaken to reduce the negative impact of transport on the environment, e.g., using propulsion sources and consumed energy. Electric and hybrid vehicles are becoming more and more popular. Methods of measuring the emissivity of the means of transport as well as devices for determining measurements are being developed. This work presents an indicator method (IM) for determining the emissivity of road transport, while omitting the use of quite complicated and expensive research equipment. For typical road vehicles, it is possible to determine the emissivity means of transport, taking into account statistical data. The values of the indicators selected, based on statistical data analysis, were verified by comparing their values with the results of the actual emissivity of air pollutants. As part of the research work, the emissivity values of selected means of transport in a distribution company were determined using the IM method. The results were compared with the actual emissivity measurements. The method of indicative determination of emissivity makes it possible to estimate the initial emissivity level, knowing the type of vehicle and the distance performed as part of the transport work. Thanks to a simple and uncomplicated method, delivery planning can become more sustainable, and the selection of less emissive means of transport can contribute to reducing the negative impact of transportation on the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Piotr Pryciński; Piotr Pielecha; Jarosław Korzeb; Jacek Pielecha; Mariusz Kostrzewski; Ahmed Eliwa;doi: 10.3390/en17215357
The increasing number of vehicles operating in Poland, especially passenger vehicles, justifies the need to conduct air pollution emission tests in the context of the impact of vehicles on the natural environment. Firstly, this article reviews the publications related to air pollutant emissions and passenger vehicles traveling on Polish roads. However, it presents a special method using advanced research equipment to determine air pollutant emissions. The above research methods are justified in implementing clean transport zones. Real Driving Emissions represent an essential procedure in the implementation of clean transport zones in Poland, verifying the actual emissions of air pollutants and modeling this phenomenon using the results of real air pollutant emissions. The results of this research state that establishing a link between a vehicle’s air pollutant emissions and its age can support making transport or delivery planning more sustainable and choosing less carbon-intensive means of transport to reduce the negative impact of transport on the environment. The scientific novelty of the proposed solutions is the verification of the actual emissions of Euro 6 vehicles and the modeling of air pollutant emissions as a function of speed and acceleration. The research results are included in this article and will become input data for further analysis in examining the impact of vehicle operating age on air pollution emissions. Consequently, the novelty of the present research also lies in its focus on the verification of the impact of operating age, particularly in the context of vehicles exceeding 15 years of age, on air pollutant emissions. By establishing a correlation between a vehicle’s air pollutant emissions and its operating age, it becomes possible to make transport or delivery planning more sustainable. Furthermore, the selection of less carbon-intensive means of transport can contribute to reducing the negative impact of transport on the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Piotr Pryciński; Róża Wawryszczuk; Jarosaław Korzeb; Piotr Pielecha; Jakub Murawski;doi: 10.19206/ce-169806
The paper presents an analytical method for determining the emissivity of transport modes, based on emissivity indicators for various vehicle types and statistical data. The method developed enables the determination of the emissivity of various vehicle types without the need to carry out tests on real vehicles. The purpose of this paper is to compare the vehicle emissivity results obtained using the developed analytical method with the real-world results obtained in RDE tests based on a case study, i.e. an analysis of the emissivity of passenger transport modes in Warsaw. The paper contains a summary of the results of measurements and calculations, as well as an analysis of potential areas of application for the developed analytical method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-169806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-169806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Krystian Woźniak; Beata Kurc; Łukasz Rymaniak; Natalia Szymlet; Piotr Pielecha; Jakub Sobczak;doi: 10.3390/en17235904
This paper investigates the application of high-capacity supercapacitors in railway systems, with a particular focus on their role in energy recovery during braking processes. The study highlights the potential for significant energy savings by capturing and storing energy generated through electrodynamic braking. Experimental measurements conducted on a diesel–electric multiple unit revealed that approximately 28.3% to 30.5% of the energy could be recovered from the traction network, regardless of the type of drive used—whether electric or diesel. This research also explores the integration of starch-based carbon as an electrode material in supercapacitors, offering an innovative, sustainable alternative to traditional graphite or graphene electrodes. The carbon material was obtained through a simple carbonization process, with experimental results demonstrating a material capacity of approximately 130 F/g. To quantify the energy recovery, calculations were made regarding the mass and power requirements of the supercapacitors. For the tested vehicle, it was estimated that around 28.7% of the energy could be recovered during the braking process. To store 15 kWh of energy, the total mass of the capacitors required is approximately 245.1 kg. The study emphasizes the importance of increasing voltage levels in railway systems, which can enhance energy transmission and utilization efficiency. Additionally, the paper discusses the necessity of controlled energy discharge, allowing for the flexible management of energy release to meet the varying power demands of trains. By integrating high-voltage supercapacitors and advanced materials like starch-based carbon, this research paves the way for more sustainable and efficient railway systems, contributing to the industry’s goals of reducing emissions and improving operational performance. The findings underscore the crucial role of these capacitors in modernizing railway infrastructure and promoting environmentally responsible transportation solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17235904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17235904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Piotr Pryciński; Róża Wawryszczuk; Jarosław Korzeb; Piotr Pielecha;doi: 10.3390/en16124541
Recently, many activities have been undertaken to reduce the negative impact of transport on the environment, e.g., using propulsion sources and consumed energy. Electric and hybrid vehicles are becoming more and more popular. Methods of measuring the emissivity of the means of transport as well as devices for determining measurements are being developed. This work presents an indicator method (IM) for determining the emissivity of road transport, while omitting the use of quite complicated and expensive research equipment. For typical road vehicles, it is possible to determine the emissivity means of transport, taking into account statistical data. The values of the indicators selected, based on statistical data analysis, were verified by comparing their values with the results of the actual emissivity of air pollutants. As part of the research work, the emissivity values of selected means of transport in a distribution company were determined using the IM method. The results were compared with the actual emissivity measurements. The method of indicative determination of emissivity makes it possible to estimate the initial emissivity level, knowing the type of vehicle and the distance performed as part of the transport work. Thanks to a simple and uncomplicated method, delivery planning can become more sustainable, and the selection of less emissive means of transport can contribute to reducing the negative impact of transportation on the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Piotr Pryciński; Piotr Pielecha; Jarosław Korzeb; Jacek Pielecha; Mariusz Kostrzewski; Ahmed Eliwa;doi: 10.3390/en17215357
The increasing number of vehicles operating in Poland, especially passenger vehicles, justifies the need to conduct air pollution emission tests in the context of the impact of vehicles on the natural environment. Firstly, this article reviews the publications related to air pollutant emissions and passenger vehicles traveling on Polish roads. However, it presents a special method using advanced research equipment to determine air pollutant emissions. The above research methods are justified in implementing clean transport zones. Real Driving Emissions represent an essential procedure in the implementation of clean transport zones in Poland, verifying the actual emissions of air pollutants and modeling this phenomenon using the results of real air pollutant emissions. The results of this research state that establishing a link between a vehicle’s air pollutant emissions and its age can support making transport or delivery planning more sustainable and choosing less carbon-intensive means of transport to reduce the negative impact of transport on the environment. The scientific novelty of the proposed solutions is the verification of the actual emissions of Euro 6 vehicles and the modeling of air pollutant emissions as a function of speed and acceleration. The research results are included in this article and will become input data for further analysis in examining the impact of vehicle operating age on air pollution emissions. Consequently, the novelty of the present research also lies in its focus on the verification of the impact of operating age, particularly in the context of vehicles exceeding 15 years of age, on air pollutant emissions. By establishing a correlation between a vehicle’s air pollutant emissions and its operating age, it becomes possible to make transport or delivery planning more sustainable. Furthermore, the selection of less carbon-intensive means of transport can contribute to reducing the negative impact of transport on the environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Piotr Pryciński; Róża Wawryszczuk; Jarosaław Korzeb; Piotr Pielecha; Jakub Murawski;doi: 10.19206/ce-169806
The paper presents an analytical method for determining the emissivity of transport modes, based on emissivity indicators for various vehicle types and statistical data. The method developed enables the determination of the emissivity of various vehicle types without the need to carry out tests on real vehicles. The purpose of this paper is to compare the vehicle emissivity results obtained using the developed analytical method with the real-world results obtained in RDE tests based on a case study, i.e. an analysis of the emissivity of passenger transport modes in Warsaw. The paper contains a summary of the results of measurements and calculations, as well as an analysis of potential areas of application for the developed analytical method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-169806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-169806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu