- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Spain, ItalyPublisher:MDPI AG Luca Brunelli; Emiliano Borri; Anna Laura Pisello; Andrea Nicolini; Carles Mateu; Luisa F. Cabeza;doi: 10.3390/su16145895
handle: 11391/1577834
The climate and energy crisis requires immediate countermeasures. Renewable energy communities (RECs) are capable of enhancing the consumption of renewable energy, involving citizens with a leading role in the energy transition process. The main objective of a REC is to maximize the consumption of renewable energy by reducing the mismatch between energy supply and demand. This is possible through the use of strategies and technologies including energy storage systems. Among these, the use of thermal energy storage (TES) is an efficient strategy due to the lower investment required compared to other storage technologies, like electric batteries. This study aims to define the role of TES in RECs, through a bibliometric analysis, in order to highlight research trends and possible gaps. This study shows that the existing literature on TES does not present terms related to RECs, thus presenting a research gap. On the other hand, RESs address the topic of energy storage in the literature, without focusing on TES in particular but considering the general aspect of the topic. Therefore, this leaves open a possibility for the development of research on TES as a possible technology applied to a REC to maximize the renewable energy sharing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16145895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16145895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Brunelli, Luca; Belloni, Elisa; Pigliautile, Ilaria; Cardelli, Riccardo; Pisello, Anna Laura; Cotana, Franco;handle: 11391/1593595
Renewable Energy Communities (RECs) are becoming essential in tackling energy transition challenges, promoting local energy sharing from diverse renewable energy sources to optimize environmental, economic, and social benefits. This study presents an innovative simulation tool for designing hybrid RECs that integrate diversified renewable sources, addressing a critical gap in existing tools. The tool was used to design a REC in a woodland area in central Italy where the sustainable management of locally available resources suggests the energy generation through biomass and photovoltaic plants. In this context, the REC initiative is further suggested as a mechanism to counteract depopulation trends by activating new services aligned with sustainable development goals. Simulations of various scenarios, involving REC members’ compositions and renewable plant sizes, reveal that opting for 600 kW biomass plant yields significant environmental benefits, with up to 1660 t/year of avoided CO2 emissions and over 80 % energy self-sufficiency for any configuration. However, incorporating more PVs in the energy mix could lead to shorter discounted payback period (down to 4.9 years). The engagement of industrial users is recognized as a critical factor for the success of the REC initiative, playing a vital role in community revitalization.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2025.110496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2025.110496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Spain, ItalyPublisher:MDPI AG Luca Brunelli; Emiliano Borri; Anna Laura Pisello; Andrea Nicolini; Carles Mateu; Luisa F. Cabeza;doi: 10.3390/su16145895
handle: 11391/1577834
The climate and energy crisis requires immediate countermeasures. Renewable energy communities (RECs) are capable of enhancing the consumption of renewable energy, involving citizens with a leading role in the energy transition process. The main objective of a REC is to maximize the consumption of renewable energy by reducing the mismatch between energy supply and demand. This is possible through the use of strategies and technologies including energy storage systems. Among these, the use of thermal energy storage (TES) is an efficient strategy due to the lower investment required compared to other storage technologies, like electric batteries. This study aims to define the role of TES in RECs, through a bibliometric analysis, in order to highlight research trends and possible gaps. This study shows that the existing literature on TES does not present terms related to RECs, thus presenting a research gap. On the other hand, RESs address the topic of energy storage in the literature, without focusing on TES in particular but considering the general aspect of the topic. Therefore, this leaves open a possibility for the development of research on TES as a possible technology applied to a REC to maximize the renewable energy sharing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16145895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16145895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Brunelli, Luca; Belloni, Elisa; Pigliautile, Ilaria; Cardelli, Riccardo; Pisello, Anna Laura; Cotana, Franco;handle: 11391/1593595
Renewable Energy Communities (RECs) are becoming essential in tackling energy transition challenges, promoting local energy sharing from diverse renewable energy sources to optimize environmental, economic, and social benefits. This study presents an innovative simulation tool for designing hybrid RECs that integrate diversified renewable sources, addressing a critical gap in existing tools. The tool was used to design a REC in a woodland area in central Italy where the sustainable management of locally available resources suggests the energy generation through biomass and photovoltaic plants. In this context, the REC initiative is further suggested as a mechanism to counteract depopulation trends by activating new services aligned with sustainable development goals. Simulations of various scenarios, involving REC members’ compositions and renewable plant sizes, reveal that opting for 600 kW biomass plant yields significant environmental benefits, with up to 1660 t/year of avoided CO2 emissions and over 80 % energy self-sufficiency for any configuration. However, incorporating more PVs in the energy mix could lead to shorter discounted payback period (down to 4.9 years). The engagement of industrial users is recognized as a critical factor for the success of the REC initiative, playing a vital role in community revitalization.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2025.110496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2025.110496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu