- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 9. Industry and infrastructure
- Energies
- Energy Research
- 11. Sustainability
- 9. Industry and infrastructure
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:MDPI AG Authors: Fernando R. Mazarrón; Jaime Cid-Falceto; Ignacio Cañas;doi: 10.3390/en5020227
The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. This research compares different construction solutions based on the use of ground thermal properties, analyzing their effectiveness to decrease annual outdoor variations and provide adequate indoor conditions. The analysis undertaken is based on over five million pieces of data, obtained from an uninterrupted four year monitoring process of various constructions with different levels of thermal mass, ranging from high volume constructions to others lacking this resource. It has been proven that constructive solutions based on the use of ground thermal inertia are more effective than other solutions when reducing the effects of outdoor conditions, even when these have air conditioning systems. It is possible to reach optimal conditions to preserve agro-food products such as wine, with a good design and an adequate amount of terrain, without having to use air conditioning systems. The results of this investigation could be of great use to the agro-food industry, becoming a reference when it comes to the design of energy efficient constructions.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/2/227/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5020227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/2/227/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5020227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jon Olaf Olaussen; Are Oust; Jan Tore Solstad; Lena Kristiansen;doi: 10.3390/en12183563
handle: 11250/2618420
Energy performance certificates (EPCs) were introduced to give property buyers better information about the energy efficiency of dwellings and provide incentives to make energy-efficient investments. Previous studies on the effect of EPCs on property value have yielded divergent results, with some studies finding that energy labels affect property values, but others finding that energy labels have little or no effect. The present paper takes the analysis one step further. Using data on energy prices in combination with transaction data from Oslo, we conclude that not only the energy label, but also the energy performance of dwellings in general, has little to no effect on transaction prices. This result is in line with the inferences of several survey studies, which indicate that when people buy a dwelling, they pay considerably less attention to its energy performance compared with other factors, such as the location, neighborhood, size, garden, and the number of bedrooms.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Magdalena Tutak; Jarosław Brodny;doi: 10.3390/en12203840
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Juan Liu; Feng Wang; Wenna Fan; Mengnan Gao;doi: 10.3390/en11102706
Under the “new normal”, China is facing more severe carbon emissions reduction targets. This paper estimates the carbon emission data of various provinces in China from 2008 to 2014, constructs a revised gravity model, and analyzes the network structure and effects of carbon emissions in various provinces by using social network analysis (SNA) and quadratic assignment procedure (QAP) analysis methods. The conclusions show that there are obvious spatial correlations between China’s provinces and regions in terms of carbon emissions: Tianjin, Shanghai, Zhejiang, Jiangsu and Guangdong are in the center of the carbon emission network, and play the role of “bridges”. Carbon emissions can be divided into four blocks: “bidirectional spillover block”, “net beneficial block”, “net spillover block” and “broker block”. The differences in the energy consumption, economic level and geographical location of the provinces have a significant impact on the spatial correlation relationship of carbon emissions. Finally, the improvement of the robustness of the overall network structure and the promotion of individual network centrality can significantly reduce the intensity of carbon emissions.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mohamed Alwaeli; Viktoria Mannheim;doi: 10.3390/en15124275
Nuclear power can replace fossil fuels and will have a decisive impact on the change in the approach to conventional energy. However, nuclear (or radioactive) wastes are produced by the operation of the nuclear reactors should be safely and properly disposed of. This paper assesses the uranium resources and the global state of nuclear power plants and determines the energy mixes in different countries using the most nuclear energy. Furthermore, this paper analysed the nuclear waste management and disposal and the depletion of abiotic resources, and the primary energy sources of a basic production process using electricity mix and nuclear electricity for a basic production (PET bottle manufacturing) process. The life cycle assessment was completed by applying the GaBi 8.0 (version 10.6) software and the CML method. In this study, we limit our discussion to high-level nuclear waste (HLW) and spent nuclear fuel (SNF) waste. We do not consider waste generated from uranium mining and milling, which is usually disposed of in near-surface impoundments close to the mine or the mill. The investigation of waste management methods is limited to European countries. This research work is relevant because determining abiotic resources is important in a life cycle assessment and current literature available on LCA analysis for nuclear powers remains under-developed. These results can guide and compare manufacturing processes involving a nuclear electricity and electricity grid mix input. The results of this research can be used to develop production processes using nuclear energy with lower abiotic depletion impacts. This research work facilitates the industry in making predictions for a production-scale plant using an LCA of production processes with nuclear energy consumption.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG A. G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Nabila Shehata; Abdul Hai Alami; Hussein M. Maghrabie; Mohammad Ali Abdelkareem;doi: 10.3390/en15228639
The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Brett Williams; Elliot Martin; Timothy Lipman; Daniel Kammen;doi: 10.3390/en4030435
We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average). The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/3/435/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4030435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/3/435/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4030435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Bing Bu; Guoying Qin; Ling Li; Guojie Li;doi: 10.3390/en11051248
With the rapid development of urban rail transit, the energy consumption of trains is increasing dramatically. The shortage of electrical energy is becoming more and more serious. In this paper, a novel method is proposed to better use regenerative braking energy for energy saving. A ‘time slot and energy grid’ model is set up to analyze the utilization of regenerative energy among trains. Based on this model, an energy efficient strategy that integrates train dispatch with train control is designed. The running time of trains in sections, the dwell time of trains at stations and the headway can be adjusted to find the global optimal solution for energy saving. The operational data of Beijing Changping subway line and Beijing Yizhuang subway line are used in simulation to illustrate the effectiveness of the proposed method in different scenarios. Simulation results show that our approach can significantly improve the utilization of regenerative braking energy and minimize the energy consumption in different scenarios when compared with the existing method.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ricardo Situmeang; Jana Mazancová; Hynek Roubík;doi: 10.3390/en15145105
By 2025, biogas is estimated to become a larger part of Indonesia’s energy mix. Biogas is a renewable energy source that also has economic and environmental advantages. Domestic biogas generation has been embraced in Indonesia as a response to the country’s energy security concerns in rural areas. Since the 1970s, 48,038 biogas plants have been built in the region. To fully develop this technology, Indonesia must discontinue relying on fossil fuels and substitute current fossil-fuel-based energy. This article provides an overview of renewable technology in Indonesia, as well as addressing domestic energy demands and referring to existing literature on the socio-technical and socio-economic barriers to biogas adoption in Indonesia. Based on a rigorous review of 71 publications published in Web of Science (WoS) between 2010 and 2021, this study explores existing barriers for biogas adoption by summarizing the current literature from technical, economic, social and environmental perspectives. Biogas adoption is a complex process with many interwoven components. Therefore, this research addresses a gap in the strategic planning and implementation process, providing policymakers with pathways to eliminate bottlenecks in renewable energy planning. Recommendations for future research are also proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | FITS-LCD: Fabric Integrat...UKRI| FITS-LCD: Fabric Integrated Thermal Storage for Low-Carbon DwellingsOluleye, G; Hawkes, AD; Allison, J; Kelly, N; Clarke, J;doi: 10.3390/en11051095
handle: 10044/1/77483
In spite of the benefits from thermal energy storage (TES) integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.
CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:MDPI AG Authors: Fernando R. Mazarrón; Jaime Cid-Falceto; Ignacio Cañas;doi: 10.3390/en5020227
The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. This research compares different construction solutions based on the use of ground thermal properties, analyzing their effectiveness to decrease annual outdoor variations and provide adequate indoor conditions. The analysis undertaken is based on over five million pieces of data, obtained from an uninterrupted four year monitoring process of various constructions with different levels of thermal mass, ranging from high volume constructions to others lacking this resource. It has been proven that constructive solutions based on the use of ground thermal inertia are more effective than other solutions when reducing the effects of outdoor conditions, even when these have air conditioning systems. It is possible to reach optimal conditions to preserve agro-food products such as wine, with a good design and an adequate amount of terrain, without having to use air conditioning systems. The results of this investigation could be of great use to the agro-food industry, becoming a reference when it comes to the design of energy efficient constructions.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/2/227/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5020227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/2/227/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5020227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jon Olaf Olaussen; Are Oust; Jan Tore Solstad; Lena Kristiansen;doi: 10.3390/en12183563
handle: 11250/2618420
Energy performance certificates (EPCs) were introduced to give property buyers better information about the energy efficiency of dwellings and provide incentives to make energy-efficient investments. Previous studies on the effect of EPCs on property value have yielded divergent results, with some studies finding that energy labels affect property values, but others finding that energy labels have little or no effect. The present paper takes the analysis one step further. Using data on energy prices in combination with transaction data from Oslo, we conclude that not only the energy label, but also the energy performance of dwellings in general, has little to no effect on transaction prices. This result is in line with the inferences of several survey studies, which indicate that when people buy a dwelling, they pay considerably less attention to its energy performance compared with other factors, such as the location, neighborhood, size, garden, and the number of bedrooms.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Magdalena Tutak; Jarosław Brodny;doi: 10.3390/en12203840
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Juan Liu; Feng Wang; Wenna Fan; Mengnan Gao;doi: 10.3390/en11102706
Under the “new normal”, China is facing more severe carbon emissions reduction targets. This paper estimates the carbon emission data of various provinces in China from 2008 to 2014, constructs a revised gravity model, and analyzes the network structure and effects of carbon emissions in various provinces by using social network analysis (SNA) and quadratic assignment procedure (QAP) analysis methods. The conclusions show that there are obvious spatial correlations between China’s provinces and regions in terms of carbon emissions: Tianjin, Shanghai, Zhejiang, Jiangsu and Guangdong are in the center of the carbon emission network, and play the role of “bridges”. Carbon emissions can be divided into four blocks: “bidirectional spillover block”, “net beneficial block”, “net spillover block” and “broker block”. The differences in the energy consumption, economic level and geographical location of the provinces have a significant impact on the spatial correlation relationship of carbon emissions. Finally, the improvement of the robustness of the overall network structure and the promotion of individual network centrality can significantly reduce the intensity of carbon emissions.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mohamed Alwaeli; Viktoria Mannheim;doi: 10.3390/en15124275
Nuclear power can replace fossil fuels and will have a decisive impact on the change in the approach to conventional energy. However, nuclear (or radioactive) wastes are produced by the operation of the nuclear reactors should be safely and properly disposed of. This paper assesses the uranium resources and the global state of nuclear power plants and determines the energy mixes in different countries using the most nuclear energy. Furthermore, this paper analysed the nuclear waste management and disposal and the depletion of abiotic resources, and the primary energy sources of a basic production process using electricity mix and nuclear electricity for a basic production (PET bottle manufacturing) process. The life cycle assessment was completed by applying the GaBi 8.0 (version 10.6) software and the CML method. In this study, we limit our discussion to high-level nuclear waste (HLW) and spent nuclear fuel (SNF) waste. We do not consider waste generated from uranium mining and milling, which is usually disposed of in near-surface impoundments close to the mine or the mill. The investigation of waste management methods is limited to European countries. This research work is relevant because determining abiotic resources is important in a life cycle assessment and current literature available on LCA analysis for nuclear powers remains under-developed. These results can guide and compare manufacturing processes involving a nuclear electricity and electricity grid mix input. The results of this research can be used to develop production processes using nuclear energy with lower abiotic depletion impacts. This research work facilitates the industry in making predictions for a production-scale plant using an LCA of production processes with nuclear energy consumption.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG A. G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Nabila Shehata; Abdul Hai Alami; Hussein M. Maghrabie; Mohammad Ali Abdelkareem;doi: 10.3390/en15228639
The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Brett Williams; Elliot Martin; Timothy Lipman; Daniel Kammen;doi: 10.3390/en4030435
We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average). The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/3/435/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4030435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/3/435/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4030435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Bing Bu; Guoying Qin; Ling Li; Guojie Li;doi: 10.3390/en11051248
With the rapid development of urban rail transit, the energy consumption of trains is increasing dramatically. The shortage of electrical energy is becoming more and more serious. In this paper, a novel method is proposed to better use regenerative braking energy for energy saving. A ‘time slot and energy grid’ model is set up to analyze the utilization of regenerative energy among trains. Based on this model, an energy efficient strategy that integrates train dispatch with train control is designed. The running time of trains in sections, the dwell time of trains at stations and the headway can be adjusted to find the global optimal solution for energy saving. The operational data of Beijing Changping subway line and Beijing Yizhuang subway line are used in simulation to illustrate the effectiveness of the proposed method in different scenarios. Simulation results show that our approach can significantly improve the utilization of regenerative braking energy and minimize the energy consumption in different scenarios when compared with the existing method.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ricardo Situmeang; Jana Mazancová; Hynek Roubík;doi: 10.3390/en15145105
By 2025, biogas is estimated to become a larger part of Indonesia’s energy mix. Biogas is a renewable energy source that also has economic and environmental advantages. Domestic biogas generation has been embraced in Indonesia as a response to the country’s energy security concerns in rural areas. Since the 1970s, 48,038 biogas plants have been built in the region. To fully develop this technology, Indonesia must discontinue relying on fossil fuels and substitute current fossil-fuel-based energy. This article provides an overview of renewable technology in Indonesia, as well as addressing domestic energy demands and referring to existing literature on the socio-technical and socio-economic barriers to biogas adoption in Indonesia. Based on a rigorous review of 71 publications published in Web of Science (WoS) between 2010 and 2021, this study explores existing barriers for biogas adoption by summarizing the current literature from technical, economic, social and environmental perspectives. Biogas adoption is a complex process with many interwoven components. Therefore, this research addresses a gap in the strategic planning and implementation process, providing policymakers with pathways to eliminate bottlenecks in renewable energy planning. Recommendations for future research are also proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | FITS-LCD: Fabric Integrat...UKRI| FITS-LCD: Fabric Integrated Thermal Storage for Low-Carbon DwellingsOluleye, G; Hawkes, AD; Allison, J; Kelly, N; Clarke, J;doi: 10.3390/en11051095
handle: 10044/1/77483
In spite of the benefits from thermal energy storage (TES) integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.
CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu