- home
- Advanced Search
- Energy Research
- 13. Climate action
- 14. Life underwater
- Environmental Evidence
- Energy Research
- 13. Climate action
- 14. Life underwater
- Environmental Evidence
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, IrelandPublisher:Springer Science and Business Media LLC Paolo Cerutti; Phosiso Sola; Audrey Chenevoy; Miyuki Iiyama; Jummai Yila; Wen Zhou; Houria Djoudi; R. Eba'a Atyi; Denis Gautier; Davison Gumbo; Yannick Kuehl; Patrice Levang; Christopher Martius; Robin Matthews; Robert Nasi; Henry Neufeldt; Mary Njenga; Gillian Petrokofsky; Matthew Saunders; Gill Shepherd; Dénis Sonwa; Cecilia Sundberg; Meine van Noordwijk;handle: 2262/81575 , 10568/94156
Abstract Background The vast majority of households in Sub-Saharan Africa (SSA) depend on wood energy—comprising firewood and charcoal—for their daily energetic needs. Such consumption trends are expected to remain a common feature of SSA’s wood energy production and supply chains, at least in the short- to medium-terms. Notwithstanding its importance, wood energy generally has low priority in SSA national policies. However, the use of wood energy is often considered a key driver of unsustainable management and negative environmental consequences in the humid and dry forests. To date, unsystematic assessments of the socio-economic and environmental consequences of wood energy use have underplayed its significance, thus further hampering policy debates. Therefore, a more balanced approach which considers both demand and supply dynamics is needed. This systematic map aims at providing a comprehensive approach to understanding the role and impacts of wood energy across all regions and aspects in SSA. Methods The objective of this systematic map is to collate evidence from studies of environmental and socio-economic impacts of wood energy value chains, by considering both demand and supply within SSA. The map questions are framed using a Populations, Exposure, Comparators and Outcomes (PECO) approach. We name the supply and demand of wood energy as the “exposure,” composed of wood energy production, harvesting, processing, and consumption. The populations of interest include both the actors involved in these activities and the forest sites where these activities occur. The comparator is defined as those cases where the same wood energy activities occur with i) available/accessible alternative energy sources, ii) regulatory frameworks that govern the sector and iii) alternative technologies for efficient use. The outcomes of interest encompass both socioeconomic and environmental impacts that can affect more than the populations named above. For instance, in addition to the direct socioeconomic impacts felt by participants in the wood energy value chain, forest dwellers may experience livelihood changes due to forest degradation caused by external harvesters. Moreover, intensified deforestation in one area may concurrently lead to forest regeneration in another.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, IrelandPublisher:Springer Science and Business Media LLC Paolo Cerutti; Phosiso Sola; Audrey Chenevoy; Miyuki Iiyama; Jummai Yila; Wen Zhou; Houria Djoudi; R. Eba'a Atyi; Denis Gautier; Davison Gumbo; Yannick Kuehl; Patrice Levang; Christopher Martius; Robin Matthews; Robert Nasi; Henry Neufeldt; Mary Njenga; Gillian Petrokofsky; Matthew Saunders; Gill Shepherd; Dénis Sonwa; Cecilia Sundberg; Meine van Noordwijk;handle: 2262/81575 , 10568/94156
Abstract Background The vast majority of households in Sub-Saharan Africa (SSA) depend on wood energy—comprising firewood and charcoal—for their daily energetic needs. Such consumption trends are expected to remain a common feature of SSA’s wood energy production and supply chains, at least in the short- to medium-terms. Notwithstanding its importance, wood energy generally has low priority in SSA national policies. However, the use of wood energy is often considered a key driver of unsustainable management and negative environmental consequences in the humid and dry forests. To date, unsystematic assessments of the socio-economic and environmental consequences of wood energy use have underplayed its significance, thus further hampering policy debates. Therefore, a more balanced approach which considers both demand and supply dynamics is needed. This systematic map aims at providing a comprehensive approach to understanding the role and impacts of wood energy across all regions and aspects in SSA. Methods The objective of this systematic map is to collate evidence from studies of environmental and socio-economic impacts of wood energy value chains, by considering both demand and supply within SSA. The map questions are framed using a Populations, Exposure, Comparators and Outcomes (PECO) approach. We name the supply and demand of wood energy as the “exposure,” composed of wood energy production, harvesting, processing, and consumption. The populations of interest include both the actors involved in these activities and the forest sites where these activities occur. The comparator is defined as those cases where the same wood energy activities occur with i) available/accessible alternative energy sources, ii) regulatory frameworks that govern the sector and iii) alternative technologies for efficient use. The outcomes of interest encompass both socioeconomic and environmental impacts that can affect more than the populations named above. For instance, in addition to the direct socioeconomic impacts felt by participants in the wood energy value chain, forest dwellers may experience livelihood changes due to forest degradation caused by external harvesters. Moreover, intensified deforestation in one area may concurrently lead to forest regeneration in another.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Magnus Land; Neal Robert Haddaway; Katarina Hedlund; Helene Bracht Jørgensen; Thomas Kätterer; Per-Erik Isberg;Abstract Background Soils are important global carbon pools that are under threat from intensive land use through a variety of agricultural practices. Sustainable management of agricultural soils may have the potential to mitigate climate change through increased carbon sequestration and increase their fertility. Among management practices to increase carbon sequestration, crop rotation designs have often been tested on yield effects in long-term agricultural experiments. However, in these studies, soil organic carbon (SOC) was monitored but not always the key objective. Thus, here we provide a method for a systematic review to test the effects of common crop rotations on SOC sequestration to provide evidence on the most sustainable management regimes that can promote SOC storage. Methods This systematic review incorporates studies concerning selected crop rotations (rotations-vs-monocultures, legumes-vs-no legumes, and perennials-vs-annuals) collated in a recently completed systematic map on the effect of agricultural management on SOC, restricted to boreo-temperate systems (i.e., the warm temperate climate zone). Some 208 studies relevant for this systematic review were identified in the systematic map. An update of the original search (September 2013) will be undertaken to identify newly published academic and grey literature. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effects of the different rotational practices. Implications of the findings will be discussed in terms of policy, practice and research, and the nature of the evidence base.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Magnus Land; Neal Robert Haddaway; Katarina Hedlund; Helene Bracht Jørgensen; Thomas Kätterer; Per-Erik Isberg;Abstract Background Soils are important global carbon pools that are under threat from intensive land use through a variety of agricultural practices. Sustainable management of agricultural soils may have the potential to mitigate climate change through increased carbon sequestration and increase their fertility. Among management practices to increase carbon sequestration, crop rotation designs have often been tested on yield effects in long-term agricultural experiments. However, in these studies, soil organic carbon (SOC) was monitored but not always the key objective. Thus, here we provide a method for a systematic review to test the effects of common crop rotations on SOC sequestration to provide evidence on the most sustainable management regimes that can promote SOC storage. Methods This systematic review incorporates studies concerning selected crop rotations (rotations-vs-monocultures, legumes-vs-no legumes, and perennials-vs-annuals) collated in a recently completed systematic map on the effect of agricultural management on SOC, restricted to boreo-temperate systems (i.e., the warm temperate climate zone). Some 208 studies relevant for this systematic review were identified in the systematic map. An update of the original search (September 2013) will be undertaken to identify newly published academic and grey literature. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effects of the different rotational practices. Implications of the findings will be discussed in terms of policy, practice and research, and the nature of the evidence base.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Jacqualyn Eales; Yeong Yik Sung; Mazlan Abd. Ghaffar;pmid: 39294734
pmc: PMC11378817
Abstract Background Climate is one of the most important driving factors of future changes in terrestrial, coastal, and marine ecosystems. Any changes in these environments can significantly influence physiological and behavioural responses in aquatic animals, such as crustacea. Crustacea play an integral role as subsistence predators, prey, or debris feeders in complex food chains, and are often referred to as good indicators of polluted or stressed conditions. They also frequently have high production, consumption, and commercial significance. However, crustacean’s responses to climate change are likely to vary by species, life-history stage, reproduction status and geographical distribution. This map is undertaken as part of the Long-Term Research Grant project which aims to identify any interactive effect on physiological compensation and behavioural strategy of how marine organisms, especially crustaceans, deal with stress from environmental change. Our proposed map will aim to outline the evidence currently existing for the impacts of climate change on the physiology and behaviour of important aquaculture crustacean species within Asia. Methods We will document peer-reviewed articles in English using published journal articles and grey literature. Two bibliographic databases (Scopus and Web of Science) and multiple organizational websites with Google scholars will be searched. The systematic map protocol will follow in accordance with the Collaboration for Environmental Evidence Guidelines and Standards. Literature will be screened at the title, abstract, and full-text level using pre-defined inclusion criteria. The map will highlight marine crustacea physiological compensation and behavioural strategies to cope with climate change. It will also improve our knowledge of the available evidence and current gaps for future research recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Jacqualyn Eales; Yeong Yik Sung; Mazlan Abd. Ghaffar;pmid: 39294734
pmc: PMC11378817
Abstract Background Climate is one of the most important driving factors of future changes in terrestrial, coastal, and marine ecosystems. Any changes in these environments can significantly influence physiological and behavioural responses in aquatic animals, such as crustacea. Crustacea play an integral role as subsistence predators, prey, or debris feeders in complex food chains, and are often referred to as good indicators of polluted or stressed conditions. They also frequently have high production, consumption, and commercial significance. However, crustacean’s responses to climate change are likely to vary by species, life-history stage, reproduction status and geographical distribution. This map is undertaken as part of the Long-Term Research Grant project which aims to identify any interactive effect on physiological compensation and behavioural strategy of how marine organisms, especially crustaceans, deal with stress from environmental change. Our proposed map will aim to outline the evidence currently existing for the impacts of climate change on the physiology and behaviour of important aquaculture crustacean species within Asia. Methods We will document peer-reviewed articles in English using published journal articles and grey literature. Two bibliographic databases (Scopus and Web of Science) and multiple organizational websites with Google scholars will be searched. The systematic map protocol will follow in accordance with the Collaboration for Environmental Evidence Guidelines and Standards. Literature will be screened at the title, abstract, and full-text level using pre-defined inclusion criteria. The map will highlight marine crustacea physiological compensation and behavioural strategies to cope with climate change. It will also improve our knowledge of the available evidence and current gaps for future research recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SwedenPublisher:Springer Science and Business Media LLC Biljana Macura; Ylva Ran; U. Martin Persson; Assem Abu Hatab; Malin Jonell; Therese Lindahl; Elin Röös;Abstract Background The global food system is causing considerable environmental harm. A transition towards more sustainable consumption is needed. Targeted public policy interventions are crucial for stimulating such transition. While there is extensive research about the promotion of more environmentally sustainable food consumption, this knowledge is scattered across different sources. This systematic map aims to collate and describe the available evidence on public policy interventions such as laws, directives, taxes and information campaigns, for achieving sustainable food consumption patterns. Methods We will search bibliographic databases, specialist websites, Google Scholar and bibliographies of relevant reviews. Searches for academic literature will be performed in English, while searches for grey literature will be performed in English, Swedish, Danish and Norwegian. Screening, including consistency checking exercises, will be done at two levels: title and abstract, and full text. We will use machine learning algorithms to support screening at the title and abstract level. Coding and meta-data extraction will include bibliographic information, policy details and context, and measured environmental outcome(s). The evidence base will be summarised narratively using tables and graphs and presented as an online interactive searchable database and a website that will allow for visualisation, filtering and exploring systematic map findings, knowledge gaps and clusters.
SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SwedenPublisher:Springer Science and Business Media LLC Biljana Macura; Ylva Ran; U. Martin Persson; Assem Abu Hatab; Malin Jonell; Therese Lindahl; Elin Röös;Abstract Background The global food system is causing considerable environmental harm. A transition towards more sustainable consumption is needed. Targeted public policy interventions are crucial for stimulating such transition. While there is extensive research about the promotion of more environmentally sustainable food consumption, this knowledge is scattered across different sources. This systematic map aims to collate and describe the available evidence on public policy interventions such as laws, directives, taxes and information campaigns, for achieving sustainable food consumption patterns. Methods We will search bibliographic databases, specialist websites, Google Scholar and bibliographies of relevant reviews. Searches for academic literature will be performed in English, while searches for grey literature will be performed in English, Swedish, Danish and Norwegian. Screening, including consistency checking exercises, will be done at two levels: title and abstract, and full text. We will use machine learning algorithms to support screening at the title and abstract level. Coding and meta-data extraction will include bibliographic information, policy details and context, and measured environmental outcome(s). The evidence base will be summarised narratively using tables and graphs and presented as an online interactive searchable database and a website that will allow for visualisation, filtering and exploring systematic map findings, knowledge gaps and clusters.
SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid K.; Jørgensen, Helene B.; Isberg, Per Erik;Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 264 citations 264 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid K.; Jørgensen, Helene B.; Isberg, Per Erik;Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 264 citations 264 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, IrelandPublisher:Springer Science and Business Media LLC Paolo Cerutti; Phosiso Sola; Audrey Chenevoy; Miyuki Iiyama; Jummai Yila; Wen Zhou; Houria Djoudi; R. Eba'a Atyi; Denis Gautier; Davison Gumbo; Yannick Kuehl; Patrice Levang; Christopher Martius; Robin Matthews; Robert Nasi; Henry Neufeldt; Mary Njenga; Gillian Petrokofsky; Matthew Saunders; Gill Shepherd; Dénis Sonwa; Cecilia Sundberg; Meine van Noordwijk;handle: 2262/81575 , 10568/94156
Abstract Background The vast majority of households in Sub-Saharan Africa (SSA) depend on wood energy—comprising firewood and charcoal—for their daily energetic needs. Such consumption trends are expected to remain a common feature of SSA’s wood energy production and supply chains, at least in the short- to medium-terms. Notwithstanding its importance, wood energy generally has low priority in SSA national policies. However, the use of wood energy is often considered a key driver of unsustainable management and negative environmental consequences in the humid and dry forests. To date, unsystematic assessments of the socio-economic and environmental consequences of wood energy use have underplayed its significance, thus further hampering policy debates. Therefore, a more balanced approach which considers both demand and supply dynamics is needed. This systematic map aims at providing a comprehensive approach to understanding the role and impacts of wood energy across all regions and aspects in SSA. Methods The objective of this systematic map is to collate evidence from studies of environmental and socio-economic impacts of wood energy value chains, by considering both demand and supply within SSA. The map questions are framed using a Populations, Exposure, Comparators and Outcomes (PECO) approach. We name the supply and demand of wood energy as the “exposure,” composed of wood energy production, harvesting, processing, and consumption. The populations of interest include both the actors involved in these activities and the forest sites where these activities occur. The comparator is defined as those cases where the same wood energy activities occur with i) available/accessible alternative energy sources, ii) regulatory frameworks that govern the sector and iii) alternative technologies for efficient use. The outcomes of interest encompass both socioeconomic and environmental impacts that can affect more than the populations named above. For instance, in addition to the direct socioeconomic impacts felt by participants in the wood energy value chain, forest dwellers may experience livelihood changes due to forest degradation caused by external harvesters. Moreover, intensified deforestation in one area may concurrently lead to forest regeneration in another.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, IrelandPublisher:Springer Science and Business Media LLC Paolo Cerutti; Phosiso Sola; Audrey Chenevoy; Miyuki Iiyama; Jummai Yila; Wen Zhou; Houria Djoudi; R. Eba'a Atyi; Denis Gautier; Davison Gumbo; Yannick Kuehl; Patrice Levang; Christopher Martius; Robin Matthews; Robert Nasi; Henry Neufeldt; Mary Njenga; Gillian Petrokofsky; Matthew Saunders; Gill Shepherd; Dénis Sonwa; Cecilia Sundberg; Meine van Noordwijk;handle: 2262/81575 , 10568/94156
Abstract Background The vast majority of households in Sub-Saharan Africa (SSA) depend on wood energy—comprising firewood and charcoal—for their daily energetic needs. Such consumption trends are expected to remain a common feature of SSA’s wood energy production and supply chains, at least in the short- to medium-terms. Notwithstanding its importance, wood energy generally has low priority in SSA national policies. However, the use of wood energy is often considered a key driver of unsustainable management and negative environmental consequences in the humid and dry forests. To date, unsystematic assessments of the socio-economic and environmental consequences of wood energy use have underplayed its significance, thus further hampering policy debates. Therefore, a more balanced approach which considers both demand and supply dynamics is needed. This systematic map aims at providing a comprehensive approach to understanding the role and impacts of wood energy across all regions and aspects in SSA. Methods The objective of this systematic map is to collate evidence from studies of environmental and socio-economic impacts of wood energy value chains, by considering both demand and supply within SSA. The map questions are framed using a Populations, Exposure, Comparators and Outcomes (PECO) approach. We name the supply and demand of wood energy as the “exposure,” composed of wood energy production, harvesting, processing, and consumption. The populations of interest include both the actors involved in these activities and the forest sites where these activities occur. The comparator is defined as those cases where the same wood energy activities occur with i) available/accessible alternative energy sources, ii) regulatory frameworks that govern the sector and iii) alternative technologies for efficient use. The outcomes of interest encompass both socioeconomic and environmental impacts that can affect more than the populations named above. For instance, in addition to the direct socioeconomic impacts felt by participants in the wood energy value chain, forest dwellers may experience livelihood changes due to forest degradation caused by external harvesters. Moreover, intensified deforestation in one area may concurrently lead to forest regeneration in another.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94156Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2015 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0038-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Magnus Land; Neal Robert Haddaway; Katarina Hedlund; Helene Bracht Jørgensen; Thomas Kätterer; Per-Erik Isberg;Abstract Background Soils are important global carbon pools that are under threat from intensive land use through a variety of agricultural practices. Sustainable management of agricultural soils may have the potential to mitigate climate change through increased carbon sequestration and increase their fertility. Among management practices to increase carbon sequestration, crop rotation designs have often been tested on yield effects in long-term agricultural experiments. However, in these studies, soil organic carbon (SOC) was monitored but not always the key objective. Thus, here we provide a method for a systematic review to test the effects of common crop rotations on SOC sequestration to provide evidence on the most sustainable management regimes that can promote SOC storage. Methods This systematic review incorporates studies concerning selected crop rotations (rotations-vs-monocultures, legumes-vs-no legumes, and perennials-vs-annuals) collated in a recently completed systematic map on the effect of agricultural management on SOC, restricted to boreo-temperate systems (i.e., the warm temperate climate zone). Some 208 studies relevant for this systematic review were identified in the systematic map. An update of the original search (September 2013) will be undertaken to identify newly published academic and grey literature. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effects of the different rotational practices. Implications of the findings will be discussed in terms of policy, practice and research, and the nature of the evidence base.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Magnus Land; Neal Robert Haddaway; Katarina Hedlund; Helene Bracht Jørgensen; Thomas Kätterer; Per-Erik Isberg;Abstract Background Soils are important global carbon pools that are under threat from intensive land use through a variety of agricultural practices. Sustainable management of agricultural soils may have the potential to mitigate climate change through increased carbon sequestration and increase their fertility. Among management practices to increase carbon sequestration, crop rotation designs have often been tested on yield effects in long-term agricultural experiments. However, in these studies, soil organic carbon (SOC) was monitored but not always the key objective. Thus, here we provide a method for a systematic review to test the effects of common crop rotations on SOC sequestration to provide evidence on the most sustainable management regimes that can promote SOC storage. Methods This systematic review incorporates studies concerning selected crop rotations (rotations-vs-monocultures, legumes-vs-no legumes, and perennials-vs-annuals) collated in a recently completed systematic map on the effect of agricultural management on SOC, restricted to boreo-temperate systems (i.e., the warm temperate climate zone). Some 208 studies relevant for this systematic review were identified in the systematic map. An update of the original search (September 2013) will be undertaken to identify newly published academic and grey literature. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effects of the different rotational practices. Implications of the findings will be discussed in terms of policy, practice and research, and the nature of the evidence base.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0086-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Jacqualyn Eales; Yeong Yik Sung; Mazlan Abd. Ghaffar;pmid: 39294734
pmc: PMC11378817
Abstract Background Climate is one of the most important driving factors of future changes in terrestrial, coastal, and marine ecosystems. Any changes in these environments can significantly influence physiological and behavioural responses in aquatic animals, such as crustacea. Crustacea play an integral role as subsistence predators, prey, or debris feeders in complex food chains, and are often referred to as good indicators of polluted or stressed conditions. They also frequently have high production, consumption, and commercial significance. However, crustacean’s responses to climate change are likely to vary by species, life-history stage, reproduction status and geographical distribution. This map is undertaken as part of the Long-Term Research Grant project which aims to identify any interactive effect on physiological compensation and behavioural strategy of how marine organisms, especially crustaceans, deal with stress from environmental change. Our proposed map will aim to outline the evidence currently existing for the impacts of climate change on the physiology and behaviour of important aquaculture crustacean species within Asia. Methods We will document peer-reviewed articles in English using published journal articles and grey literature. Two bibliographic databases (Scopus and Web of Science) and multiple organizational websites with Google scholars will be searched. The systematic map protocol will follow in accordance with the Collaboration for Environmental Evidence Guidelines and Standards. Literature will be screened at the title, abstract, and full-text level using pre-defined inclusion criteria. The map will highlight marine crustacea physiological compensation and behavioural strategies to cope with climate change. It will also improve our knowledge of the available evidence and current gaps for future research recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Jacqualyn Eales; Yeong Yik Sung; Mazlan Abd. Ghaffar;pmid: 39294734
pmc: PMC11378817
Abstract Background Climate is one of the most important driving factors of future changes in terrestrial, coastal, and marine ecosystems. Any changes in these environments can significantly influence physiological and behavioural responses in aquatic animals, such as crustacea. Crustacea play an integral role as subsistence predators, prey, or debris feeders in complex food chains, and are often referred to as good indicators of polluted or stressed conditions. They also frequently have high production, consumption, and commercial significance. However, crustacean’s responses to climate change are likely to vary by species, life-history stage, reproduction status and geographical distribution. This map is undertaken as part of the Long-Term Research Grant project which aims to identify any interactive effect on physiological compensation and behavioural strategy of how marine organisms, especially crustaceans, deal with stress from environmental change. Our proposed map will aim to outline the evidence currently existing for the impacts of climate change on the physiology and behaviour of important aquaculture crustacean species within Asia. Methods We will document peer-reviewed articles in English using published journal articles and grey literature. Two bibliographic databases (Scopus and Web of Science) and multiple organizational websites with Google scholars will be searched. The systematic map protocol will follow in accordance with the Collaboration for Environmental Evidence Guidelines and Standards. Literature will be screened at the title, abstract, and full-text level using pre-defined inclusion criteria. The map will highlight marine crustacea physiological compensation and behavioural strategies to cope with climate change. It will also improve our knowledge of the available evidence and current gaps for future research recommendations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00263-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SwedenPublisher:Springer Science and Business Media LLC Biljana Macura; Ylva Ran; U. Martin Persson; Assem Abu Hatab; Malin Jonell; Therese Lindahl; Elin Röös;Abstract Background The global food system is causing considerable environmental harm. A transition towards more sustainable consumption is needed. Targeted public policy interventions are crucial for stimulating such transition. While there is extensive research about the promotion of more environmentally sustainable food consumption, this knowledge is scattered across different sources. This systematic map aims to collate and describe the available evidence on public policy interventions such as laws, directives, taxes and information campaigns, for achieving sustainable food consumption patterns. Methods We will search bibliographic databases, specialist websites, Google Scholar and bibliographies of relevant reviews. Searches for academic literature will be performed in English, while searches for grey literature will be performed in English, Swedish, Danish and Norwegian. Screening, including consistency checking exercises, will be done at two levels: title and abstract, and full text. We will use machine learning algorithms to support screening at the title and abstract level. Coding and meta-data extraction will include bibliographic information, policy details and context, and measured environmental outcome(s). The evidence base will be summarised narratively using tables and graphs and presented as an online interactive searchable database and a website that will allow for visualisation, filtering and exploring systematic map findings, knowledge gaps and clusters.
SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SwedenPublisher:Springer Science and Business Media LLC Biljana Macura; Ylva Ran; U. Martin Persson; Assem Abu Hatab; Malin Jonell; Therese Lindahl; Elin Röös;Abstract Background The global food system is causing considerable environmental harm. A transition towards more sustainable consumption is needed. Targeted public policy interventions are crucial for stimulating such transition. While there is extensive research about the promotion of more environmentally sustainable food consumption, this knowledge is scattered across different sources. This systematic map aims to collate and describe the available evidence on public policy interventions such as laws, directives, taxes and information campaigns, for achieving sustainable food consumption patterns. Methods We will search bibliographic databases, specialist websites, Google Scholar and bibliographies of relevant reviews. Searches for academic literature will be performed in English, while searches for grey literature will be performed in English, Swedish, Danish and Norwegian. Screening, including consistency checking exercises, will be done at two levels: title and abstract, and full text. We will use machine learning algorithms to support screening at the title and abstract level. Coding and meta-data extraction will include bibliographic information, policy details and context, and measured environmental outcome(s). The evidence base will be summarised narratively using tables and graphs and presented as an online interactive searchable database and a website that will allow for visualisation, filtering and exploring systematic map findings, knowledge gaps and clusters.
SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Nordic Africa Institute: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid K.; Jørgensen, Helene B.; Isberg, Per Erik;Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 264 citations 264 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid K.; Jørgensen, Helene B.; Isberg, Per Erik;Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 264 citations 264 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0108-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu