- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Applied Energy
- Energy Research
- Open Access
- Restricted
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors: Suárez Poch, Francisco Ignacio; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;handle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Devesh Chugh; Kyle R. Gluesenkamp; Ahmad Abu-Heiba; Morteza Alipanah; Abdy Fazeli; Richard Rode; Michael Schmid; Viral K. Patel; Saeed Moghaddam;Abstract While the use of energy efficient absorption heat pumps has been typically limited to the high capacity commercial and industrial applications, the use of a semi-open absorption heat pump for water heating has been demonstrated to be an energy efficient alternative for residential scale applications. A semi-open absorption system uses ambient water vapor as the refrigerant in the absorber where its heat of phase change is transferred to the process water, cooling the solution in the absorber. The solution is pumped to the desorber, where by adding heat, the water vapor is released from the solution and condensed in the condenser. The heat of phase change of water vapor is transferred to process water again in the condenser. This cycle when implemented with a membrane-based absorber in a plate and frame form of heat exchanger using ionic liquids can overcome the challenges related to the system architecture of conventional absorption heat pumps like the lower efficiency at small scale, crystallization/corrosion issues with the desiccants and the high cost of hermetically sealed components. The cycle COP for such a system was previously demonstrated by Chugh et al. for high humidity conditions. In this experimental study, design improvements were made that expand the system’s applicability to more practical and standardized test conditions. With these improvements, the performance of the system was evaluated. The results presented in this study demonstrate the improved system’s viability as a heat pump water heater conforming to standard water heater test conditions. Performance was measured at a cycle thermal COP of 1.2 with a hot water delivery water temperature of 56 °C and ambient air at 19 °C and 49% RH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: POTENZA, MARCO; MILANESE, Marco; COLANGELO, Gianpiero; DE RISI, Arturo;handle: 11587/415133
Abstract An experimental study on new high temperature parabolic trough collector (PTC), with transparent receiver tube, based on gas-phase nanofluid, has been carried out for the first time in this work. Two-axes solar tracking PTC, with 4 m 2 reflecting surface has been realized. Besides, two coaxial quartz tubes, with vacuum in the inner space were used as receiver pipe, with air-dispersed CuO nano-powders as working fluid. The aim of this work was to investigate the technological issues related to the use of gas-based nanofluid coupled with transparent quartz receiver and to evaluate the performance of the first prototype, comparing numerical and experimental results. The experimental campaign highlighted a critical issue related to nanopowder deposition within the receiver pipe, due to humidity. Moreover, in a day of measurement, the fluid temperature higher than 145 °C has been maintained for about 10 h, reaching a maximum value of 180 °C, with a mean efficiency of about 65%.
Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Liu, Junbei; Zhuge, Chengxiang; Tang, Justin Hayse Chiwing G.; Meng, Meng; Zhang, Jie;The potential widespread adoption of Electric Vehicles (EVs) has received considerable attention across the globe. However, as a promising technology for both EVs and smart grid, Vehicle-to-Grid (V2G) tended to receive much less attention. This paper developed an agent-based joint EV and V2G model to simultaneously simulate how EVs and V2G might diffuse across space and over time, with empirical findings from a questionnaire survey in Beijing. In particular, random forest models were developed with the survey data to generate each agent’s preferences and attitudes towards EVs and V2G. The joint model also considered three typical levels of social influence, i.e., global influence, neighbor effect, and friendship effect, in the diffusion of EVs and V2G. Finally, the joint model was tested through several “what-if” scenarios, considering different V2G prices, EV/V2G advertisement intensities, and vehicle purchase restrictions. The survey results suggested that 67.7% of the respondents were familiar with EVs, but only 3.3% of them were familiar with V2G. However, over 70% of them would/might try V2G given that they had an EV. The model results suggested that the number of CV applicants was 6.19 times that of BEV applicants in 2030 in the baseline scenario, and only 27.8% of BEV users adopted V2G. Furthermore, V2G selling price, EV/V2G advertisement, and dedicated PHEV purchase permits were not very influential to the diffusion of V2G. The outcomes would be helpful for EV- and V2G-related stakeholders in policy making and technology investment.
University of Bath's... arrow_drop_down University of Bath's research portalArticle . 2022Data sources: University of Bath's research portalUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Bath's... arrow_drop_down University of Bath's research portalArticle . 2022Data sources: University of Bath's research portalUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors: Martin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; +5 AuthorsMartin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; Harpa Birgisdottir; Rolf Frischknecht; Guillaume Habert; Thomas Lützkendorf; Alexander Passer;Applied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Park, Chybyung; Jeong, Byongug; Zhou, Peilin;This study was planned to offer the roadmap for lifecycle clean shipping by addressing the fundamental question of ‘what are the promising energy solutions for the shipping sector?’. This goal was attempted to be achieved by a lifecycle comparative analysis of the viability of three zero-carbon fuels, ammonia, hydrogen, and inland electricity, based on the operational practicality as well as Well-to-Wake environmental impacts. Credible business scenarios were designed with a high-level screening of 27 short-route ferries currently engaged in 26 West-Scotland coastal routes. Then a series of comparative analyses between the diesel and the proposed alternative fuel sources was conducted. While carbon-free fuels are in the early stages of development in the UK, there are various views on how these fuels can be produced, distributed, and used onboard for the clean shipping economy. To determine the optimal energy solutions, all credible scenarios for the upstream pathways for these fuels were developed, based on the current and future prospected UK energy infrastructure and grids. Those scenarios were examined for West-Scotland shipping and extended to the UK targets. Their technical aspects for maritime application were also investigated in consideration of safety, regulation, infrastructural availability, supply chain constraints, barriers, and the downstream emission pathways to their uptake onboard. Ship conceptual designs were briefly conducted to evaluate the systems, technologies, and equipment required for onboard installation to utilise zero-carbon fuels. As a result of the study, when hydrogen was used as a fuel in fuel cells and electricity was supplied as a backup from batteries that store inland power and the solar PV system, GHG emissions were 25.7% of the conventional fossil fuel-using scenario. In addition, it was confirmed that GWP was 22.2% compared to MGO when ammonia was used as fuel without reforming into hydrogen and backup power was supplied from batteries and the solar PV system. It is ...
Strathprints arrow_drop_down StrathprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Strathprints arrow_drop_down StrathprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Japan, ItalyPublisher:Elsevier BV MASTRONARDO, EMANUELA; Bonaccorsi, L; Kato, Y.; PIPEROPOULOS, Elpida; MILONE, Candida;handle: 11570/3089276
MgO/H2O/Mg(OH)2 chemical heat storage of waste energy from industrial processes is a promising technology in view of a more efficient use and saving of primary energy sources. A new approach was used to develop a hybrid heat storage material made of magnesium hydroxide (Mg(OH)2) and exfoliated graphite (which is used to improve the heat transfer with its high thermal conductivity). Mg(OH)2 nanoplatelets were directly grown on graphite surface via a deposition–precipitation method to increase the compatibility between the two materials. The material thus obtained, named DP-MG, was experimentally tested to determine its heat storage and output capacities. An improvement of the material efficiency was obtained with a higher storage capacity at lower reaction temperature and a higher heat output rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Funded by:FCT | BIOCO2FCT| BIOCO2Authors: Andrade, Carlos; Desport, Lucas; Selosse, Sandrine;International audience
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Chang Yan; Shengfeng Xu; Zhenxu Sun; Thorsten Lutz; Dilong Guo; Guowei Yang;Various types of measurement techniques, such as Light Detection and Ranging (LiDAR) devices, anemometers, and wind vanes, are extensively utilized in wind energy to characterize the inflow. However, these methods typically gather data at limited points within local wind fields, capturing only a fraction of the wind field's characteristics at wind turbine sites, thus hindering detailed wind field analysis. This study introduces a framework using Physics-informed Neural Networks to assimilate diverse sensor data types. This includes line-of-sight wind speed, velocity magnitude and direction, velocity components, and pressure. Moreover, the parameterized Navier-Stokes equations are integrated as physical constraints, ensuring that the neural networks accurately represent atmospheric flow dynamics. The framework accounts for the turbulent nature of atmospheric boundary layer flow by including artificial eddy viscosity in the network outputs, enhancing the model's ability to learn and accurately depict large-scale flow structures. The reconstructed flow field and the effective wind speed are in good agreement with the actual data. Furthermore, a transfer learning strategy is employed for the online deployment of pre-trained PINN, which requires less time than that of the actual physical flow. This capability allows the framework to reconstruct wind flow fields in real time based on live data. In the demo cases, the maximum error between the effective wind speed reconstructed online and the actual value at the wind turbine site is only 3.7%. The proposed data assimilation framework provides a universal tool for reconstructing spatiotemporal wind flow fields using various measurement data. Additionally, it presents a viable approach for the online assimilation of real-time measurements. To facilitate the utilization of wind energy, our framework's source code is openly accessible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: David Banasiak; Thomas Kienberger;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors: Suárez Poch, Francisco Ignacio; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;handle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Devesh Chugh; Kyle R. Gluesenkamp; Ahmad Abu-Heiba; Morteza Alipanah; Abdy Fazeli; Richard Rode; Michael Schmid; Viral K. Patel; Saeed Moghaddam;Abstract While the use of energy efficient absorption heat pumps has been typically limited to the high capacity commercial and industrial applications, the use of a semi-open absorption heat pump for water heating has been demonstrated to be an energy efficient alternative for residential scale applications. A semi-open absorption system uses ambient water vapor as the refrigerant in the absorber where its heat of phase change is transferred to the process water, cooling the solution in the absorber. The solution is pumped to the desorber, where by adding heat, the water vapor is released from the solution and condensed in the condenser. The heat of phase change of water vapor is transferred to process water again in the condenser. This cycle when implemented with a membrane-based absorber in a plate and frame form of heat exchanger using ionic liquids can overcome the challenges related to the system architecture of conventional absorption heat pumps like the lower efficiency at small scale, crystallization/corrosion issues with the desiccants and the high cost of hermetically sealed components. The cycle COP for such a system was previously demonstrated by Chugh et al. for high humidity conditions. In this experimental study, design improvements were made that expand the system’s applicability to more practical and standardized test conditions. With these improvements, the performance of the system was evaluated. The results presented in this study demonstrate the improved system’s viability as a heat pump water heater conforming to standard water heater test conditions. Performance was measured at a cycle thermal COP of 1.2 with a hot water delivery water temperature of 56 °C and ambient air at 19 °C and 49% RH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: POTENZA, MARCO; MILANESE, Marco; COLANGELO, Gianpiero; DE RISI, Arturo;handle: 11587/415133
Abstract An experimental study on new high temperature parabolic trough collector (PTC), with transparent receiver tube, based on gas-phase nanofluid, has been carried out for the first time in this work. Two-axes solar tracking PTC, with 4 m 2 reflecting surface has been realized. Besides, two coaxial quartz tubes, with vacuum in the inner space were used as receiver pipe, with air-dispersed CuO nano-powders as working fluid. The aim of this work was to investigate the technological issues related to the use of gas-based nanofluid coupled with transparent quartz receiver and to evaluate the performance of the first prototype, comparing numerical and experimental results. The experimental campaign highlighted a critical issue related to nanopowder deposition within the receiver pipe, due to humidity. Moreover, in a day of measurement, the fluid temperature higher than 145 °C has been maintained for about 10 h, reaching a maximum value of 180 °C, with a mean efficiency of about 65%.
Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Liu, Junbei; Zhuge, Chengxiang; Tang, Justin Hayse Chiwing G.; Meng, Meng; Zhang, Jie;The potential widespread adoption of Electric Vehicles (EVs) has received considerable attention across the globe. However, as a promising technology for both EVs and smart grid, Vehicle-to-Grid (V2G) tended to receive much less attention. This paper developed an agent-based joint EV and V2G model to simultaneously simulate how EVs and V2G might diffuse across space and over time, with empirical findings from a questionnaire survey in Beijing. In particular, random forest models were developed with the survey data to generate each agent’s preferences and attitudes towards EVs and V2G. The joint model also considered three typical levels of social influence, i.e., global influence, neighbor effect, and friendship effect, in the diffusion of EVs and V2G. Finally, the joint model was tested through several “what-if” scenarios, considering different V2G prices, EV/V2G advertisement intensities, and vehicle purchase restrictions. The survey results suggested that 67.7% of the respondents were familiar with EVs, but only 3.3% of them were familiar with V2G. However, over 70% of them would/might try V2G given that they had an EV. The model results suggested that the number of CV applicants was 6.19 times that of BEV applicants in 2030 in the baseline scenario, and only 27.8% of BEV users adopted V2G. Furthermore, V2G selling price, EV/V2G advertisement, and dedicated PHEV purchase permits were not very influential to the diffusion of V2G. The outcomes would be helpful for EV- and V2G-related stakeholders in policy making and technology investment.
University of Bath's... arrow_drop_down University of Bath's research portalArticle . 2022Data sources: University of Bath's research portalUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Bath's... arrow_drop_down University of Bath's research portalArticle . 2022Data sources: University of Bath's research portalUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors: Martin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; +5 AuthorsMartin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; Harpa Birgisdottir; Rolf Frischknecht; Guillaume Habert; Thomas Lützkendorf; Alexander Passer;Applied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Park, Chybyung; Jeong, Byongug; Zhou, Peilin;This study was planned to offer the roadmap for lifecycle clean shipping by addressing the fundamental question of ‘what are the promising energy solutions for the shipping sector?’. This goal was attempted to be achieved by a lifecycle comparative analysis of the viability of three zero-carbon fuels, ammonia, hydrogen, and inland electricity, based on the operational practicality as well as Well-to-Wake environmental impacts. Credible business scenarios were designed with a high-level screening of 27 short-route ferries currently engaged in 26 West-Scotland coastal routes. Then a series of comparative analyses between the diesel and the proposed alternative fuel sources was conducted. While carbon-free fuels are in the early stages of development in the UK, there are various views on how these fuels can be produced, distributed, and used onboard for the clean shipping economy. To determine the optimal energy solutions, all credible scenarios for the upstream pathways for these fuels were developed, based on the current and future prospected UK energy infrastructure and grids. Those scenarios were examined for West-Scotland shipping and extended to the UK targets. Their technical aspects for maritime application were also investigated in consideration of safety, regulation, infrastructural availability, supply chain constraints, barriers, and the downstream emission pathways to their uptake onboard. Ship conceptual designs were briefly conducted to evaluate the systems, technologies, and equipment required for onboard installation to utilise zero-carbon fuels. As a result of the study, when hydrogen was used as a fuel in fuel cells and electricity was supplied as a backup from batteries that store inland power and the solar PV system, GHG emissions were 25.7% of the conventional fossil fuel-using scenario. In addition, it was confirmed that GWP was 22.2% compared to MGO when ammonia was used as fuel without reforming into hydrogen and backup power was supplied from batteries and the solar PV system. It is ...
Strathprints arrow_drop_down StrathprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Strathprints arrow_drop_down StrathprintsArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Japan, ItalyPublisher:Elsevier BV MASTRONARDO, EMANUELA; Bonaccorsi, L; Kato, Y.; PIPEROPOULOS, Elpida; MILONE, Candida;handle: 11570/3089276
MgO/H2O/Mg(OH)2 chemical heat storage of waste energy from industrial processes is a promising technology in view of a more efficient use and saving of primary energy sources. A new approach was used to develop a hybrid heat storage material made of magnesium hydroxide (Mg(OH)2) and exfoliated graphite (which is used to improve the heat transfer with its high thermal conductivity). Mg(OH)2 nanoplatelets were directly grown on graphite surface via a deposition–precipitation method to increase the compatibility between the two materials. The material thus obtained, named DP-MG, was experimentally tested to determine its heat storage and output capacities. An improvement of the material efficiency was obtained with a higher storage capacity at lower reaction temperature and a higher heat output rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Funded by:FCT | BIOCO2FCT| BIOCO2Authors: Andrade, Carlos; Desport, Lucas; Selosse, Sandrine;International audience
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Chang Yan; Shengfeng Xu; Zhenxu Sun; Thorsten Lutz; Dilong Guo; Guowei Yang;Various types of measurement techniques, such as Light Detection and Ranging (LiDAR) devices, anemometers, and wind vanes, are extensively utilized in wind energy to characterize the inflow. However, these methods typically gather data at limited points within local wind fields, capturing only a fraction of the wind field's characteristics at wind turbine sites, thus hindering detailed wind field analysis. This study introduces a framework using Physics-informed Neural Networks to assimilate diverse sensor data types. This includes line-of-sight wind speed, velocity magnitude and direction, velocity components, and pressure. Moreover, the parameterized Navier-Stokes equations are integrated as physical constraints, ensuring that the neural networks accurately represent atmospheric flow dynamics. The framework accounts for the turbulent nature of atmospheric boundary layer flow by including artificial eddy viscosity in the network outputs, enhancing the model's ability to learn and accurately depict large-scale flow structures. The reconstructed flow field and the effective wind speed are in good agreement with the actual data. Furthermore, a transfer learning strategy is employed for the online deployment of pre-trained PINN, which requires less time than that of the actual physical flow. This capability allows the framework to reconstruct wind flow fields in real time based on live data. In the demo cases, the maximum error between the effective wind speed reconstructed online and the actual value at the wind turbine site is only 3.7%. The proposed data assimilation framework provides a universal tool for reconstructing spatiotemporal wind flow fields using various measurement data. Additionally, it presents a viable approach for the online assimilation of real-time measurements. To facilitate the utilization of wind energy, our framework's source code is openly accessible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: David Banasiak; Thomas Kienberger;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu