- home
- Advanced Search
- Energy Research
- 2021-2025
- Energies
- Chinese Academy of Sciences
- Energy Research
- 2021-2025
- Energies
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ke Wang; Ruimin Zhang; Yun Guo; Yunjie Liu; Yu Tian; Xiaojun Wang; Peng Wang; Zhiming Liu;doi: 10.3390/en16010478
It is critical and challenging to develop high performance transition metal phosphides (TMPs) electrocatalysts for oxygen evolution reaction (OER) to address fossil energy shortages. Herein, we report the synthesis of Co2P embedded in N-doped porous carbon (Co2P@N-C) via a facile one-step strategy. The obtained catalyst exhibits a lower overpotential of 352 mV for OER at a current density of 10 mA cm−2 and a small Tafel slope of 84.6 mV dec−1, with long-time reliable stability. The excellent electrocatalytic performance of Co2P@N-C can be mainly owed to the synergistic effect between the Co2P and highly conductive N-C substrate, which not only affords rich exposed active sites but also promotes faster charge transfer, thus significantly promoting OER process. This work presents a promising and industrially applicable synthetic strategy for the rational design of high performance nonnoble metal electrocatalysts with enhanced OER performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ligen Tang; Guosheng Ding; Shijie Song; Huimin Wang; Wuqiang Xie; Jiulong Wang;doi: 10.3390/en17010122
Carbon capture and storage (CCS) is the most promising method of curbing atmospheric carbon dioxide levels from 2020 to 2050. Accurate predictions of geology and sealing capabilities play a key role in the safe execution of CCS projects. However, popular forecasting methods often oversimplify the process and fail to guide actual CCS projects in the right direction. This study takes a specific block in Shenhua, China as an example. The relative permeability of CO2 and brine is measured experimentally, and a multi-field coupling CO2 storage prediction model is constructed, focusing on analyzing the sealing ability of the block from the perspective of injection modes. The results show that when injected at a constant speed, the average formation pressure and wellbore pressure are positively correlated with the CO2 injection rate and time; when the injection rate is 0.5 kg/s for 50 years, the average formation pressure increases by 38% and the wellbore pressure increases by 68%. For different injection modes, the average formation pressures of various injection methods are similar during injection. Among them, the pressure increases around the well in the decreasing injection mode is the smallest. The CO2 concentration around the wellbore is the largest, and the CO2 diffusion range continues to expand with injection time. In summary, formation pressure increases with the increase in injection rate and injection time, and the decreasing injection mode has the least impact on the increase in formation pressure. The CO2 concentration is the largest around the well, and the CO2 concentration gradually decreases. The conclusion helps determine the geological carrying capacity of injection volumes and provides insights into the selection of more appropriate injection modes. Accurate predictions of CO2 storage capacity are critical to ensuring project safety and monitoring potentially hazardous sites based on reservoir characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Mingzhi Zhao; Ningbo Wang; Chun Chang; Xiaoming Hu; Yingjie Liu; Lei Liu; Jianan Wang;doi: 10.3390/en16135118
The greenhouse’s energy consumption is a major limiting factor for output and development. To address this, it is necessary to adopt green and low-carbon heating technologies to replace traditional fuels. This will not only help conserve energy but will also reduce emissions, thereby improving the thermal environmental conditions for agriculture. This paper aims to research and develop a vertical heat exchange tube array device specifically designed for greenhouses. The focus is on enhancing the passive heat absorption and heat storage efficiency of the device and its influence on the thermal environment of the greenhouse. In order to improve the heat absorption and storage efficiency of the heat exchanger device and its impact on the greenhouse thermal environment, experimental comparative analysis was conducted using air, water, and phase-change materials as working fluids inside the pipes. Through a combination of experiments and simulations, it was verified that the heat exchanger device is capable of actively regulating the greenhouse thermal environment. The results show that heat exchangers of all three types of working fluids can effectively improve the stability of soil temperature and play a “shifting the peak and filling the valley” role in regulating the indoor air temperature while positively regulating the relative humidity of the air. Notably, when the working fluid is a phase-change material, it has the most significant impact on the thermal environment of the greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yu Zhong; Chunyan Zou; Qi Wang; Guifeng Zhu; Wei Guo; Zhichao Wang;doi: 10.3390/en17112469
Nuclear graphite plays a crucial role in thermal-spectrum thorium molten salt reactors (TMSRs) as both the neutron moderator and the construct for the coolant flowing channel. When subjected to irradiation and elevated temperatures, graphite components experience considerable deformation due to a combination of dimensional changes, thermal expansion, irradiation creep, elastic deformation, and changes in thermomechanical characteristics. The lifespan of the graphite component is a limiting factor in TMSR designs as it strongly correlates with the dimensional changes of the graphite. To evaluate the thermal and mechanical reactions of graphite component under TMSR core conditions, it is necessary to couple models of thermal-hydraulics, neutronics, and thermal-mechanics. This paper presents an enhanced methodology for analyzing the deformation of graphite components using the finite element method. Then, this method was applied to analyze a 10-year deformation history of a hexagonal prism assembly (HPA) and it was compared with the traditional hexagonal round channel assembly (RCA). The results demonstrate that the stress–strain field of both types of graphite components undergo significant variations with the increasing neutron fluence from irradiation. HPA graphite exhibits a slower deformation as compared to RCA graphite when subjected to identical operating conditions. In this case, HPA graphite has a lifespan of approximately 10 years, while RCA graphite lasts only 8.8 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Baicen Lin; Yunsheng Wei; Shusheng Gao; Liyou Ye; Huaxun Liu; Wenqing Zhu; Jianzhong Zhang; Donghuan Han;doi: 10.3390/en17071595
Conventional recovery enhancement techniques are aimed at reducing the abandonment pressure, but there is an upper limit for recovery enhancement due to the energy limitation of reservoirs. Gas injection for energy supplementation has become an effective way to enhance gas recovery by reducing hydrocarbon saturation in gas reservoirs. This review systematically investigates progress in gas injection for enhanced gas recovery in three aspects: experiments, numerical simulations and field examples. It summarizes and analyzes the current research results on gas injection for EGR and explores further prospects for future research. The research results show the following: (1) Based on the differences in the physical properties of CO2, N2 and natural gas, effective cushion gas can be formed in bottom reservoirs after gas injection to achieve the effects of pressurization, energy replenishment and gravity differentiation water resistance. However, further experimental evaluation is needed for the degree of increase in penetration ability. (2) It is more beneficial to inject N2 before CO2 or the mixture of N2 and CO2 in terms of EGR effect and cost. (3) According to numerical simulation studies, water drive and condensate gas reservoirs exhibit significant recovery effects, while CO2-EGR in depleted gas reservoirs is more advantageous for burial and storage; current numerical simulations only focus on mobility mass and saturation changes and lack a mixed-phase percolation model, which leads to insufficient analysis of injection strategies and a lack of distinction among different gas extraction effects. Therefore, a mixed-phase-driven percolation model that can characterize the fluid flow path is worth studying in depth. (4) The De Wijk and Budafa Szinfelleti projects have shown that gas injection into water drive and depleted reservoirs has a large advantage for EGR, as it can enhance recovery by more than 10%. More experiments, simulation studies and demonstration projects are needed to promote the development of gas injection technology for enhanced recovery in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Chenglong Chen; Yikun Liu; Decai Lin; Guohui Qu; Jiqiang Zhi; Shuang Liang; Fengjiao Wang; Dukui Zheng; Anqi Shen; Lifeng Bo; Shiwei Zhu;doi: 10.3390/en14185844
Accurately predicting oilfield development indicators (such as oil production, liquid production, current formation pressure, water cut, oil production rate, recovery rate, cost, profit, etc.) is to realize the rational and scientific development of oilfields, which is an important basis to ensure the stable production of the oilfield. Due to existing oilfield development index prediction methods being difficult to accurately reflect the complex nonlinear problem in the oil field development process, using the artificial neural network, which can predict the oilfield development index with the function of infinitely close to any non-linear function, will be the most ideal prediction method at present. This article summarizes four commonly used artificial neural networks: the BP neural network, the radial basis neural network, the generalized regression neural network, and the wavelet neural network, and mainly introduces their network structure, function types, calculation process and prediction results. Four kinds of artificial neural networks are optimized through various intelligent algorithms, and the principle and essence of optimization are analyzed. Furthermore, the advantages and disadvantages of the four artificial neural networks are summarized and compared. Finally, based on the application of artificial neural networks in other fields and on existing problems, a future development direction is proposed which can serve as a reference and guide for the research on accurate prediction of oilfield development indicators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xiuxiu Pan; Linghui Sun; Xu Huo; Chun Feng; Zhirong Zhang;doi: 10.3390/en16237846
The research and application of CO2 storage and enhanced oil recovery (EOR) have gradually emerged in China. However, the vast unconventional oil and gas resources are stored in reservoir pores ranging from several nanometers to several hundred micrometers in size. Additionally, CO2 geological sequestration involves the migration of fluids in tight caprock and target layers, which directly alters the transport and phase behavior of reservoir fluids at different scales. Micro- and nanoscale fluidics technology, with their advantages of in situ visualization, high temperature and pressure resistance, and rapid response, have become a new technical approach to investigate gas–liquid interactions in confined domains and an effective supplement to traditional core displacement experiments. The research progress of micro–nano fluidics visualization technology in various aspects, such as CO2 capture, utilization, and storage, is summarized in this paper, and the future development trends and research directions of micro–nano fluidics technology in the field of carbon capture, utilization, and storage (CCUS) are predicted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Jichang Dong; Ge Gao; Xiuting Li; Xiaoting Liu;doi: 10.3390/en14217247
Fiscal sustainability is an issue of great concern for governments globally and air pollution control has become an important factor affecting fiscal sustainability. This study aims to examine the impact of air pollution on fiscal sustainability in the short and long run. We conducted an empirical analysis based on air pollution and local government debt data on China’s prefecture-level cities in 2014–2019, using regression discontinuity design (RDD) and a panel data model. The results show that air pollution reduces the debt burden of governments in the short run. However, in the long run, addressing the negative impacts of air pollution adds to the debt burden of local governments, hindering fiscal sustainability. Fiscal freedom and the level of public services significantly moderate the negative impact of air pollution on fiscal sustainability. A higher level of fiscal freedom generally indicates a greater incentive for local governments to raise pollutant emission standards, strengthen the construction of green infrastructure, and subsidize green enterprises. Furthermore, a higher level of public services reflects better infrastructure and higher levels of investment in environmental protection, which help to reduce the negative impact of air pollution. The governments are suggested to take measures to effectively control air pollution, so as to enhance fiscal stability in the long run.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yong Wang; Xubin Zhao; Chuanyi Tang; Xuyang Zhang; Chunmiao Ma; Xingyu Yi; Fengqi Tan; Dandan Zhao; Jie Li; Yuqian Jing;doi: 10.3390/en16020626
The microscopic pore structure controls the fluid seepage characteristics, which in turn affect the final recovery of the reservoir. The pore structures of different reservoirs vary greatly; therefore, the scientific classification of microscopic pore structures is the prerequisite for enhancing the overall oil recovery. For the low permeability conglomerate reservoir in Mahu Sag, due to the differences in the sedimentary environment and late diagenesis, various reservoir types have developed in different regions, so it is very difficult to develop the reservoir using an integrated method. To effectively solve the problem of microscopic pore structure classification, the low permeability conglomerate of the Baikouquan Formation in Well Block Ma18, Well Block Ma131, and Well Block Aihu2 are selected as the research objects. The CTS, HPMI, CMI, NMR, and digital cores are used to systematically analyze the reservoir micro pore structure characteristics, identify the differences between different reservoir types, and optimize the corresponding micro pore structure characteristic parameters for reservoir classification. The results show that the pore types of the low permeability conglomerate reservoir in the Baikouquan Formation of the Mahu Sag are mainly intragranular dissolved pores and residual intergranular pores, accounting for 93.54%, microfractures and shrinkage pores that are locally developed, accounting for 5.63%, and other pore types that are less developed, accounting for only 0.83%. On the basis of clear pore types, the conglomerate reservoir of the Baikouquan Formation is divided into four types based on the physical properties and microscopic pore structure parameters. Different reservoir types have good matching relationships with lithologies. Sandy-grain-supported conglomerate, gravelly coarse sandstone, sandy-gravelly matrix-supported conglomerate, and argillaceous-supported conglomerate correspond to type I, II, III, and IV reservoirs, respectively. From type I to type IV, the corresponding microscopic pore structure parameters show regular change characteristics, among which, porosity and permeability gradually decrease, displacement pressure and median pressure increase, maximum pore throat radius, median radius, and average capillary radius decrease, and pore structure becomes worse overall. Apparently, determining the reservoir type, clarifying its fluid migration rule, and formulating a reasonable development plan can substantially enhance the oil recovery rate of low permeability conglomerate reservoirs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Xiaoyu Xu; Chun Chang; Xinxin Guo; Mingzhi Zhao;doi: 10.3390/en16145511
The coiled ice-storage-based air conditioning system plays a significant role in enhancing grid peak regulation and improving cooling economy. This paper presents theoretical and experimental studies conducted on the ice storage process of coiled ice storage air conditioning technology. The cooling of water is divided into two stages:10.0 °C to 4.0 °C and 4.0 °C to below 0.0 °C. Initially, the ice storage process forms an ice layer with a thickness of 2.50 mm on the lower surface of the coil, but eventually, the ice layer on the upper surface becomes 3.85 mm thicker than the lower surface as a result of the natural convection of water and density reversal at 4.0 °C. Furthermore, the impact of three coils with different thermal conductivity on the ice storage process was evaluated. It was observed that the thermal conductivity of R-HDPE (reinforced high-density polyethylene) was only 2.6 W/(m·K) higher than HDPE (high-density polyethylene), yet it reduced the freezing time by 34.85%, while the thermal conductivity of steel was 37.4 W/(m·K) higher than R-HDPE, but only decreased the freezing time by 9.40%. The results demonstrated that the rate of ice accumulation increased with thermal conductivity. However, when the coil material’s thermal conductivity surpassed that of ice, the further increase of thermal conductivity gradually weakened its impact on the ice storage rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ke Wang; Ruimin Zhang; Yun Guo; Yunjie Liu; Yu Tian; Xiaojun Wang; Peng Wang; Zhiming Liu;doi: 10.3390/en16010478
It is critical and challenging to develop high performance transition metal phosphides (TMPs) electrocatalysts for oxygen evolution reaction (OER) to address fossil energy shortages. Herein, we report the synthesis of Co2P embedded in N-doped porous carbon (Co2P@N-C) via a facile one-step strategy. The obtained catalyst exhibits a lower overpotential of 352 mV for OER at a current density of 10 mA cm−2 and a small Tafel slope of 84.6 mV dec−1, with long-time reliable stability. The excellent electrocatalytic performance of Co2P@N-C can be mainly owed to the synergistic effect between the Co2P and highly conductive N-C substrate, which not only affords rich exposed active sites but also promotes faster charge transfer, thus significantly promoting OER process. This work presents a promising and industrially applicable synthetic strategy for the rational design of high performance nonnoble metal electrocatalysts with enhanced OER performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ligen Tang; Guosheng Ding; Shijie Song; Huimin Wang; Wuqiang Xie; Jiulong Wang;doi: 10.3390/en17010122
Carbon capture and storage (CCS) is the most promising method of curbing atmospheric carbon dioxide levels from 2020 to 2050. Accurate predictions of geology and sealing capabilities play a key role in the safe execution of CCS projects. However, popular forecasting methods often oversimplify the process and fail to guide actual CCS projects in the right direction. This study takes a specific block in Shenhua, China as an example. The relative permeability of CO2 and brine is measured experimentally, and a multi-field coupling CO2 storage prediction model is constructed, focusing on analyzing the sealing ability of the block from the perspective of injection modes. The results show that when injected at a constant speed, the average formation pressure and wellbore pressure are positively correlated with the CO2 injection rate and time; when the injection rate is 0.5 kg/s for 50 years, the average formation pressure increases by 38% and the wellbore pressure increases by 68%. For different injection modes, the average formation pressures of various injection methods are similar during injection. Among them, the pressure increases around the well in the decreasing injection mode is the smallest. The CO2 concentration around the wellbore is the largest, and the CO2 diffusion range continues to expand with injection time. In summary, formation pressure increases with the increase in injection rate and injection time, and the decreasing injection mode has the least impact on the increase in formation pressure. The CO2 concentration is the largest around the well, and the CO2 concentration gradually decreases. The conclusion helps determine the geological carrying capacity of injection volumes and provides insights into the selection of more appropriate injection modes. Accurate predictions of CO2 storage capacity are critical to ensuring project safety and monitoring potentially hazardous sites based on reservoir characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Mingzhi Zhao; Ningbo Wang; Chun Chang; Xiaoming Hu; Yingjie Liu; Lei Liu; Jianan Wang;doi: 10.3390/en16135118
The greenhouse’s energy consumption is a major limiting factor for output and development. To address this, it is necessary to adopt green and low-carbon heating technologies to replace traditional fuels. This will not only help conserve energy but will also reduce emissions, thereby improving the thermal environmental conditions for agriculture. This paper aims to research and develop a vertical heat exchange tube array device specifically designed for greenhouses. The focus is on enhancing the passive heat absorption and heat storage efficiency of the device and its influence on the thermal environment of the greenhouse. In order to improve the heat absorption and storage efficiency of the heat exchanger device and its impact on the greenhouse thermal environment, experimental comparative analysis was conducted using air, water, and phase-change materials as working fluids inside the pipes. Through a combination of experiments and simulations, it was verified that the heat exchanger device is capable of actively regulating the greenhouse thermal environment. The results show that heat exchangers of all three types of working fluids can effectively improve the stability of soil temperature and play a “shifting the peak and filling the valley” role in regulating the indoor air temperature while positively regulating the relative humidity of the air. Notably, when the working fluid is a phase-change material, it has the most significant impact on the thermal environment of the greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yu Zhong; Chunyan Zou; Qi Wang; Guifeng Zhu; Wei Guo; Zhichao Wang;doi: 10.3390/en17112469
Nuclear graphite plays a crucial role in thermal-spectrum thorium molten salt reactors (TMSRs) as both the neutron moderator and the construct for the coolant flowing channel. When subjected to irradiation and elevated temperatures, graphite components experience considerable deformation due to a combination of dimensional changes, thermal expansion, irradiation creep, elastic deformation, and changes in thermomechanical characteristics. The lifespan of the graphite component is a limiting factor in TMSR designs as it strongly correlates with the dimensional changes of the graphite. To evaluate the thermal and mechanical reactions of graphite component under TMSR core conditions, it is necessary to couple models of thermal-hydraulics, neutronics, and thermal-mechanics. This paper presents an enhanced methodology for analyzing the deformation of graphite components using the finite element method. Then, this method was applied to analyze a 10-year deformation history of a hexagonal prism assembly (HPA) and it was compared with the traditional hexagonal round channel assembly (RCA). The results demonstrate that the stress–strain field of both types of graphite components undergo significant variations with the increasing neutron fluence from irradiation. HPA graphite exhibits a slower deformation as compared to RCA graphite when subjected to identical operating conditions. In this case, HPA graphite has a lifespan of approximately 10 years, while RCA graphite lasts only 8.8 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Baicen Lin; Yunsheng Wei; Shusheng Gao; Liyou Ye; Huaxun Liu; Wenqing Zhu; Jianzhong Zhang; Donghuan Han;doi: 10.3390/en17071595
Conventional recovery enhancement techniques are aimed at reducing the abandonment pressure, but there is an upper limit for recovery enhancement due to the energy limitation of reservoirs. Gas injection for energy supplementation has become an effective way to enhance gas recovery by reducing hydrocarbon saturation in gas reservoirs. This review systematically investigates progress in gas injection for enhanced gas recovery in three aspects: experiments, numerical simulations and field examples. It summarizes and analyzes the current research results on gas injection for EGR and explores further prospects for future research. The research results show the following: (1) Based on the differences in the physical properties of CO2, N2 and natural gas, effective cushion gas can be formed in bottom reservoirs after gas injection to achieve the effects of pressurization, energy replenishment and gravity differentiation water resistance. However, further experimental evaluation is needed for the degree of increase in penetration ability. (2) It is more beneficial to inject N2 before CO2 or the mixture of N2 and CO2 in terms of EGR effect and cost. (3) According to numerical simulation studies, water drive and condensate gas reservoirs exhibit significant recovery effects, while CO2-EGR in depleted gas reservoirs is more advantageous for burial and storage; current numerical simulations only focus on mobility mass and saturation changes and lack a mixed-phase percolation model, which leads to insufficient analysis of injection strategies and a lack of distinction among different gas extraction effects. Therefore, a mixed-phase-driven percolation model that can characterize the fluid flow path is worth studying in depth. (4) The De Wijk and Budafa Szinfelleti projects have shown that gas injection into water drive and depleted reservoirs has a large advantage for EGR, as it can enhance recovery by more than 10%. More experiments, simulation studies and demonstration projects are needed to promote the development of gas injection technology for enhanced recovery in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Chenglong Chen; Yikun Liu; Decai Lin; Guohui Qu; Jiqiang Zhi; Shuang Liang; Fengjiao Wang; Dukui Zheng; Anqi Shen; Lifeng Bo; Shiwei Zhu;doi: 10.3390/en14185844
Accurately predicting oilfield development indicators (such as oil production, liquid production, current formation pressure, water cut, oil production rate, recovery rate, cost, profit, etc.) is to realize the rational and scientific development of oilfields, which is an important basis to ensure the stable production of the oilfield. Due to existing oilfield development index prediction methods being difficult to accurately reflect the complex nonlinear problem in the oil field development process, using the artificial neural network, which can predict the oilfield development index with the function of infinitely close to any non-linear function, will be the most ideal prediction method at present. This article summarizes four commonly used artificial neural networks: the BP neural network, the radial basis neural network, the generalized regression neural network, and the wavelet neural network, and mainly introduces their network structure, function types, calculation process and prediction results. Four kinds of artificial neural networks are optimized through various intelligent algorithms, and the principle and essence of optimization are analyzed. Furthermore, the advantages and disadvantages of the four artificial neural networks are summarized and compared. Finally, based on the application of artificial neural networks in other fields and on existing problems, a future development direction is proposed which can serve as a reference and guide for the research on accurate prediction of oilfield development indicators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xiuxiu Pan; Linghui Sun; Xu Huo; Chun Feng; Zhirong Zhang;doi: 10.3390/en16237846
The research and application of CO2 storage and enhanced oil recovery (EOR) have gradually emerged in China. However, the vast unconventional oil and gas resources are stored in reservoir pores ranging from several nanometers to several hundred micrometers in size. Additionally, CO2 geological sequestration involves the migration of fluids in tight caprock and target layers, which directly alters the transport and phase behavior of reservoir fluids at different scales. Micro- and nanoscale fluidics technology, with their advantages of in situ visualization, high temperature and pressure resistance, and rapid response, have become a new technical approach to investigate gas–liquid interactions in confined domains and an effective supplement to traditional core displacement experiments. The research progress of micro–nano fluidics visualization technology in various aspects, such as CO2 capture, utilization, and storage, is summarized in this paper, and the future development trends and research directions of micro–nano fluidics technology in the field of carbon capture, utilization, and storage (CCUS) are predicted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Jichang Dong; Ge Gao; Xiuting Li; Xiaoting Liu;doi: 10.3390/en14217247
Fiscal sustainability is an issue of great concern for governments globally and air pollution control has become an important factor affecting fiscal sustainability. This study aims to examine the impact of air pollution on fiscal sustainability in the short and long run. We conducted an empirical analysis based on air pollution and local government debt data on China’s prefecture-level cities in 2014–2019, using regression discontinuity design (RDD) and a panel data model. The results show that air pollution reduces the debt burden of governments in the short run. However, in the long run, addressing the negative impacts of air pollution adds to the debt burden of local governments, hindering fiscal sustainability. Fiscal freedom and the level of public services significantly moderate the negative impact of air pollution on fiscal sustainability. A higher level of fiscal freedom generally indicates a greater incentive for local governments to raise pollutant emission standards, strengthen the construction of green infrastructure, and subsidize green enterprises. Furthermore, a higher level of public services reflects better infrastructure and higher levels of investment in environmental protection, which help to reduce the negative impact of air pollution. The governments are suggested to take measures to effectively control air pollution, so as to enhance fiscal stability in the long run.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Yong Wang; Xubin Zhao; Chuanyi Tang; Xuyang Zhang; Chunmiao Ma; Xingyu Yi; Fengqi Tan; Dandan Zhao; Jie Li; Yuqian Jing;doi: 10.3390/en16020626
The microscopic pore structure controls the fluid seepage characteristics, which in turn affect the final recovery of the reservoir. The pore structures of different reservoirs vary greatly; therefore, the scientific classification of microscopic pore structures is the prerequisite for enhancing the overall oil recovery. For the low permeability conglomerate reservoir in Mahu Sag, due to the differences in the sedimentary environment and late diagenesis, various reservoir types have developed in different regions, so it is very difficult to develop the reservoir using an integrated method. To effectively solve the problem of microscopic pore structure classification, the low permeability conglomerate of the Baikouquan Formation in Well Block Ma18, Well Block Ma131, and Well Block Aihu2 are selected as the research objects. The CTS, HPMI, CMI, NMR, and digital cores are used to systematically analyze the reservoir micro pore structure characteristics, identify the differences between different reservoir types, and optimize the corresponding micro pore structure characteristic parameters for reservoir classification. The results show that the pore types of the low permeability conglomerate reservoir in the Baikouquan Formation of the Mahu Sag are mainly intragranular dissolved pores and residual intergranular pores, accounting for 93.54%, microfractures and shrinkage pores that are locally developed, accounting for 5.63%, and other pore types that are less developed, accounting for only 0.83%. On the basis of clear pore types, the conglomerate reservoir of the Baikouquan Formation is divided into four types based on the physical properties and microscopic pore structure parameters. Different reservoir types have good matching relationships with lithologies. Sandy-grain-supported conglomerate, gravelly coarse sandstone, sandy-gravelly matrix-supported conglomerate, and argillaceous-supported conglomerate correspond to type I, II, III, and IV reservoirs, respectively. From type I to type IV, the corresponding microscopic pore structure parameters show regular change characteristics, among which, porosity and permeability gradually decrease, displacement pressure and median pressure increase, maximum pore throat radius, median radius, and average capillary radius decrease, and pore structure becomes worse overall. Apparently, determining the reservoir type, clarifying its fluid migration rule, and formulating a reasonable development plan can substantially enhance the oil recovery rate of low permeability conglomerate reservoirs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Xiaoyu Xu; Chun Chang; Xinxin Guo; Mingzhi Zhao;doi: 10.3390/en16145511
The coiled ice-storage-based air conditioning system plays a significant role in enhancing grid peak regulation and improving cooling economy. This paper presents theoretical and experimental studies conducted on the ice storage process of coiled ice storage air conditioning technology. The cooling of water is divided into two stages:10.0 °C to 4.0 °C and 4.0 °C to below 0.0 °C. Initially, the ice storage process forms an ice layer with a thickness of 2.50 mm on the lower surface of the coil, but eventually, the ice layer on the upper surface becomes 3.85 mm thicker than the lower surface as a result of the natural convection of water and density reversal at 4.0 °C. Furthermore, the impact of three coils with different thermal conductivity on the ice storage process was evaluated. It was observed that the thermal conductivity of R-HDPE (reinforced high-density polyethylene) was only 2.6 W/(m·K) higher than HDPE (high-density polyethylene), yet it reduced the freezing time by 34.85%, while the thermal conductivity of steel was 37.4 W/(m·K) higher than R-HDPE, but only decreased the freezing time by 9.40%. The results demonstrated that the rate of ice accumulation increased with thermal conductivity. However, when the coil material’s thermal conductivity surpassed that of ice, the further increase of thermal conductivity gradually weakened its impact on the ice storage rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu