- home
- Search
- Energy Research
- 14. Life underwater
- Transport Research
- University of California System
- Energy Research
- 14. Life underwater
- Transport Research
- University of California System
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 15 Oct 2024 Germany, United States, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | EPOCA, SNSF | Climate and Environmental...EC| EPOCA ,SNSF| Climate and Environmental PhysicsAuthors:Ellycia R. Harrould-Kolieb;
Ellycia R. Harrould-Kolieb
Ellycia R. Harrould-Kolieb in OpenAIREFortunat Joos;
Fortunat Joos
Fortunat Joos in OpenAIREArne Biastoch;
Ryan P. Kelly; +8 AuthorsArne Biastoch
Arne Biastoch in OpenAIREEllycia R. Harrould-Kolieb;
Ellycia R. Harrould-Kolieb
Ellycia R. Harrould-Kolieb in OpenAIREFortunat Joos;
Fortunat Joos
Fortunat Joos in OpenAIREArne Biastoch;
Ryan P. Kelly; Ryan P. Kelly; Dan Laffoley; Raphaël Billé;Arne Biastoch
Arne Biastoch in OpenAIREKristy J. Kroeker;
Kristy J. Kroeker
Kristy J. Kroeker in OpenAIREAndreas Oschlies;
Dorothée Herr;Andreas Oschlies
Andreas Oschlies in OpenAIREJean-Pierre Gattuso;
Jean-Pierre Gattuso;Jean-Pierre Gattuso
Jean-Pierre Gattuso in OpenAIREpmid: 23897413
Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.
Environmental Manage... arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00267-013-0132-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Manage... arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00267-013-0132-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesAuthors:Tamar Guy-Haim;
Tamar Guy-Haim
Tamar Guy-Haim in OpenAIREHarriet Alexander;
Tom W. Bell; Raven L. Bier; +15 AuthorsHarriet Alexander
Harriet Alexander in OpenAIRETamar Guy-Haim;
Tamar Guy-Haim
Tamar Guy-Haim in OpenAIREHarriet Alexander;
Tom W. Bell; Raven L. Bier;Harriet Alexander
Harriet Alexander in OpenAIRELauren E. Bortolotti;
Christian Briseño-Avena;Lauren E. Bortolotti
Lauren E. Bortolotti in OpenAIREXiaoli Dong;
Xiaoli Dong
Xiaoli Dong in OpenAIREAlison M. Flanagan;
Alison M. Flanagan
Alison M. Flanagan in OpenAIREJulia Grosse;
Lars Grossmann;Julia Grosse
Julia Grosse in OpenAIRESarah Hasnain;
Rachel Hovel; Cora A. Johnston; Dan R. Miller;Sarah Hasnain
Sarah Hasnain in OpenAIREMario Muscarella;
Akana E. Noto;Mario Muscarella
Mario Muscarella in OpenAIREAlexander J. Reisinger;
Heidi J. Smith; Karen Stamieszkin;Alexander J. Reisinger
Alexander J. Reisinger in OpenAIREhandle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Germany, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | Evolutionary Genetics of ..., NSF | NSF Postdoctoral Fellowsh...NSF| Evolutionary Genetics of a Sea Urchin Skeletogenic Gene Network ,NSF| NSF Postdoctoral Fellowship in Biology FY 2012Authors: Sam Dupont; Gregory A. Wray;Daniel E. Runcie;
Daniel E. Runcie
Daniel E. Runcie in OpenAIREMeike Stumpp;
+3 AuthorsMeike Stumpp
Meike Stumpp in OpenAIRESam Dupont; Gregory A. Wray;Daniel E. Runcie;
Daniel E. Runcie
Daniel E. Runcie in OpenAIREMeike Stumpp;
David A. Garfield; David A. Garfield;Meike Stumpp
Meike Stumpp in OpenAIRENarimane Dorey;
Narimane Dorey
Narimane Dorey in OpenAIREOcean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms' health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
OceanRep arrow_drop_down OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/37384/1/evw272.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gbe/evw272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/37384/1/evw272.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gbe/evw272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Germany, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | AtlantOS, UKRI | Marine LTSS: Climate Link...EC| AtlantOS ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceAuthors: Anne-Cathrin Wölfl; Gordon Johnston;Geoffroy Lamarche;
Geoffroy Lamarche; +17 AuthorsGeoffroy Lamarche
Geoffroy Lamarche in OpenAIREAnne-Cathrin Wölfl; Gordon Johnston;Geoffroy Lamarche;
Geoffroy Lamarche;Geoffroy Lamarche
Geoffroy Lamarche in OpenAIRELarry Mayer;
David Millar; Terje Haga Pedersen;Larry Mayer
Larry Mayer in OpenAIREKim Picard;
Anja Reitz;Kim Picard
Kim Picard in OpenAIREThierry Schmitt;
Thierry Schmitt
Thierry Schmitt in OpenAIREMartin Visbeck;
Martin Visbeck
Martin Visbeck in OpenAIREHelen Snaith;
Pauline Weatherall;Helen Snaith
Helen Snaith in OpenAIRERochelle Wigley;
Sam Amirebrahimi;Rochelle Wigley
Rochelle Wigley in OpenAIREColin W. Devey;
Boris Dorschel;Colin W. Devey
Colin W. Devey in OpenAIREVicki Ferrini;
Veerle A. I. Huvenne;Vicki Ferrini
Vicki Ferrini in OpenAIREMartin Jakobsson;
Jennifer Jencks;Martin Jakobsson
Martin Jakobsson in OpenAIREDetailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Spain, Switzerland, Germany, Germany, France, United KingdomPublisher:American Geophysical Union (AGU) Funded by:NSF | STC: Center for Chemical ..., EC | 4C, EC | OceanPeak +4 projectsNSF| STC: Center for Chemical Currencies of a Microbial Planet ,EC| 4C ,EC| OceanPeak ,EC| COMFORT ,RCN| Infrastructure for Norwegian Earth System modelling ,NSF| Quantifying mechanisms of variability in ocean CO2 uptake 1980-present ,EC| GOCARTAuthors:Tim DeVries;
Tim DeVries
Tim DeVries in OpenAIREKana Yamamoto;
Kana Yamamoto
Kana Yamamoto in OpenAIRERik Wanninkhof;
Rik Wanninkhof
Rik Wanninkhof in OpenAIRENicolas Gruber;
+31 AuthorsNicolas Gruber
Nicolas Gruber in OpenAIRETim DeVries;
Tim DeVries
Tim DeVries in OpenAIREKana Yamamoto;
Kana Yamamoto
Kana Yamamoto in OpenAIRERik Wanninkhof;
Rik Wanninkhof
Rik Wanninkhof in OpenAIRENicolas Gruber;
Nicolas Gruber
Nicolas Gruber in OpenAIREJudith Hauck;
Judith Hauck
Judith Hauck in OpenAIREJens Daniel Müller;
Jens Daniel Müller
Jens Daniel Müller in OpenAIRELaurent Bopp;
Laurent Bopp
Laurent Bopp in OpenAIREDustin Carroll;
Dustin Carroll
Dustin Carroll in OpenAIREBrendan Carter;
Brendan Carter
Brendan Carter in OpenAIREThi‐Tuyet‐Trang Chau;
Thi‐Tuyet‐Trang Chau
Thi‐Tuyet‐Trang Chau in OpenAIREScott C. Doney;
Scott C. Doney
Scott C. Doney in OpenAIREMarion Gehlen;
Marion Gehlen
Marion Gehlen in OpenAIRELucas Gloege;
Lucas Gloege
Lucas Gloege in OpenAIRELuke Gregor;
Luke Gregor
Luke Gregor in OpenAIREStephanie Henson;
Ji Hyun Kim;Stephanie Henson
Stephanie Henson in OpenAIREYosuke Iida;
Yosuke Iida
Yosuke Iida in OpenAIRETatiana Ilyina;
Tatiana Ilyina
Tatiana Ilyina in OpenAIREPeter Landschützer;
Peter Landschützer
Peter Landschützer in OpenAIRECorinne Le Quéré;
Corinne Le Quéré
Corinne Le Quéré in OpenAIREDavid Munro;
David Munro
David Munro in OpenAIRECara Nissen;
Cara Nissen
Cara Nissen in OpenAIRELavinia Patara;
Lavinia Patara
Lavinia Patara in OpenAIREFiz F. Pérez;
Fiz F. Pérez
Fiz F. Pérez in OpenAIRELaure Resplandy;
Laure Resplandy
Laure Resplandy in OpenAIREKeith B. Rodgers;
Keith B. Rodgers
Keith B. Rodgers in OpenAIREJörg Schwinger;
Jörg Schwinger
Jörg Schwinger in OpenAIRERoland Séférian;
Roland Séférian
Roland Séférian in OpenAIREValentina Sicardi;
Valentina Sicardi
Valentina Sicardi in OpenAIREJens Terhaar;
Joaquin Triñanes;Jens Terhaar
Jens Terhaar in OpenAIREHiroyuki Tsujino;
Hiroyuki Tsujino
Hiroyuki Tsujino in OpenAIREAndrew Watson;
Andrew Watson
Andrew Watson in OpenAIRESayaka Yasunaka;
Sayaka Yasunaka
Sayaka Yasunaka in OpenAIREJiye Zeng;
Jiye Zeng
Jiye Zeng in OpenAIREhandle: 10261/338384
AbstractThis contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United StatesPublisher:Proceedings of the National Academy of Sciences Authors: Luis Valentin-Alvarado; Luis Valentin-Alvarado;Tyler J. Goepfert;
Tyler J. Goepfert; +9 AuthorsTyler J. Goepfert
Tyler J. Goepfert in OpenAIRELuis Valentin-Alvarado; Luis Valentin-Alvarado;Tyler J. Goepfert;
Tyler J. Goepfert;Tyler J. Goepfert
Tyler J. Goepfert in OpenAIREGiacomo R. DiTullio;
Dawn M. Moran;Giacomo R. DiTullio
Giacomo R. DiTullio in OpenAIREAlessandro Tagliabue;
Mak A. Saito; Matthew M. McIlvin;Alessandro Tagliabue
Alessandro Tagliabue in OpenAIRENicholas J. Hawco;
Nicholas J. Hawco;Nicholas J. Hawco
Nicholas J. Hawco in OpenAIRERandelle M. Bundy;
Randelle M. Bundy;Randelle M. Bundy
Randelle M. Bundy in OpenAIRESignificance Photosynthetic phytoplankton are the foundation of marine ecosystems. Their growth in the sunlit ocean depends on ample supply of over a dozen essential elements. Of these elemental nutrients, the metal cobalt is found at the lowest concentrations in seawater, but it is unknown whether cobalt scarcity impacts phytoplankton growth. We have measured minimum cobalt requirements of the photosynthetic bacterium Prochlorococcus , which flourishes in nutrient-poor regions of the ocean where many other phytoplankton cannot survive. Prochlorococcus can grow with less than 50 cobalt atoms per cell, an extraordinarily small requirement that explains how this organism can persist in low-cobalt environments. These results enable predictions of how marine ecosystems respond to climate-driven changes in nutrient supply.
CORE arrow_drop_down COREArticle . 2020Full-Text: http://livrepository.liverpool.ac.uk/3098013/1/Hawco_Prochloro_cobalt_for_PNAS_postprint.pdfData sources: COREProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2001393117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 14download downloads 14 Powered bymore_vert CORE arrow_drop_down COREArticle . 2020Full-Text: http://livrepository.liverpool.ac.uk/3098013/1/Hawco_Prochloro_cobalt_for_PNAS_postprint.pdfData sources: COREProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2001393117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 20 Jul 2022 Germany, Saudi Arabia, Sweden, Australia, Spain, France, Saudi Arabia, Sweden, France, United Kingdom, United KingdomPublisher:Cambridge University Press (CUP) Funded by:NSERC, EC | TiPACCs, EC | PROTECT +4 projectsNSERC ,EC| TiPACCs ,EC| PROTECT ,EC| ERA ,EC| FirEUrisk ,EC| COMFORT ,[no funder available]Authors: Martin, Maria,;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
+63 AuthorsBauer, Nico
Bauer, Nico in OpenAIREMartin, Maria,;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
Bertram, Christoph;Bauer, Nico
Bauer, Nico in OpenAIREBlenckner, Thorsten;
Blenckner, Thorsten
Blenckner, Thorsten in OpenAIREBowen, Kathryn;
Bowen, Kathryn
Bowen, Kathryn in OpenAIREBrando, Paulo,;
Rudolph, Tanya Brodie;Brando, Paulo,
Brando, Paulo, in OpenAIREBüchs, Milena;
Bustamante, Mercedes;Büchs, Milena
Büchs, Milena in OpenAIREChen, Deliang;
Chen, Deliang
Chen, Deliang in OpenAIRECleugh, Helen;
Dasgupta, Purnamita; Denton, Fatima; Donges, Jonathan,;Cleugh, Helen
Cleugh, Helen in OpenAIREDonkor, Felix Kwabena;
Donkor, Felix Kwabena
Donkor, Felix Kwabena in OpenAIREDuan, Hongbo;
Duan, Hongbo
Duan, Hongbo in OpenAIREDuarte, Carlos,;
Ebi, Kristie,;Duarte, Carlos,
Duarte, Carlos, in OpenAIREEdwards, Clea,;
Engel, Anja;Edwards, Clea,
Edwards, Clea, in OpenAIREFisher, Eleanor;
Fisher, Eleanor
Fisher, Eleanor in OpenAIREFuss, Sabine;
Gaertner, Juliana; Gettelman, Andrew; Girardin, Cécile A.J.;Fuss, Sabine
Fuss, Sabine in OpenAIREGolledge, Nicholas,;
Green, Jessica,; Grose, Michael,; Hashizume, Masahiro;Golledge, Nicholas,
Golledge, Nicholas, in OpenAIREHebden, Sophie;
Hepach, Helmke; Hirota, Marina; Hsu, Huang-Hsiung; Kojima, Satoshi; Lele, Sharachchandra; Lorek, Sylvia; Lotze, Heike,;Hebden, Sophie
Hebden, Sophie in OpenAIREMatthews, H. Damon,;
Matthews, H. Damon,
Matthews, H. Damon, in OpenAIREMccauley, Darren;
Mebratu, Desta;Mccauley, Darren
Mccauley, Darren in OpenAIREMengis, Nadine;
Mengis, Nadine
Mengis, Nadine in OpenAIRENolan, Rachael,;
Nolan, Rachael,
Nolan, Rachael, in OpenAIREPihl, Erik;
Rahmstorf, Stefan;Pihl, Erik
Pihl, Erik in OpenAIRERedman, Aaron;
Redman, Aaron
Redman, Aaron in OpenAIREReid, Colleen,;
Reid, Colleen,
Reid, Colleen, in OpenAIRERockström, Johan;
Rogelj, Joeri;Rockström, Johan
Rockström, Johan in OpenAIRESaunois, Marielle;
Sayer, Lizzie; Schlosser, Peter;Saunois, Marielle
Saunois, Marielle in OpenAIRESioen, Giles,;
Sioen, Giles,
Sioen, Giles, in OpenAIRESpangenberg, Joachim,;
Stammer, Detlef; Sterner, Thomas N.S.;Spangenberg, Joachim,
Spangenberg, Joachim, in OpenAIREStevens, Nicola;
Thonicke, Kirsten;Stevens, Nicola
Stevens, Nicola in OpenAIRETian, Hanqin;
Winkelmann, Ricarda; Woodcock, James; Sendra, Olga,; Rudolph, Tanya,; Donkor, Felix,; Girardin, Cécile,; Sterner, Thomas;Tian, Hanqin
Tian, Hanqin in OpenAIREhandle: 10044/1/93398 , 10754/673835 , 11343/301490 , 2117/357724
Non-technical summaryWe summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summaryA synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summaryHow do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 92visibility views 92 download downloads 134 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Australia, Australia, GermanyPublisher:Wiley Authors:Marion Gehlen;
Marion Gehlen
Marion Gehlen in OpenAIREPhilip W. Boyd;
Philip W. Boyd; Áurea Maria Ciotti; +18 AuthorsPhilip W. Boyd
Philip W. Boyd in OpenAIREMarion Gehlen;
Marion Gehlen
Marion Gehlen in OpenAIREPhilip W. Boyd;
Philip W. Boyd; Áurea Maria Ciotti;Philip W. Boyd
Philip W. Boyd in OpenAIREUta Passow;
Haimanti Biswas;Uta Passow
Uta Passow in OpenAIRECatriona L. Hurd;
Catriona L. Hurd
Catriona L. Hurd in OpenAIREMarcello Vichi;
Marcello Vichi
Marcello Vichi in OpenAIREJonathan N. Havenhand;
Jonathan N. Havenhand
Jonathan N. Havenhand in OpenAIREDavid A. Hutchins;
Sam Dupont;David A. Hutchins
David A. Hutchins in OpenAIREMax S Rintoul;
Haruko Kurihara;Max S Rintoul
Max S Rintoul in OpenAIREJorge M. Navarro;
Jorge M. Navarro
Jorge M. Navarro in OpenAIREGöran E. Nilsson;
Göran E. Nilsson
Göran E. Nilsson in OpenAIREChristina M. McGraw;
Ulf Riebesell; Sinéad Collins;Christina M. McGraw
Christina M. McGraw in OpenAIREKatharina E. Fabricius;
Hans-Otto Pörtner;Katharina E. Fabricius
Katharina E. Fabricius in OpenAIREKunshan Gao;
Kunshan Gao
Kunshan Gao in OpenAIREJean-Pierre Gattuso;
Jean-Pierre Gattuso
Jean-Pierre Gattuso in OpenAIREdoi: 10.1111/gcb.14102
pmid: 29476630
AbstractMarine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy‐making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process‐oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science‐based policy formulation.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 302 citations 302 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806710Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Patrick L. Colin;T. M. Shaun Johnston;
T. M. Shaun Johnston
T. M. Shaun Johnston in OpenAIREdoi: 10.3390/jmse8090680
Sea surface temperature, determined remotely by satellite (SSST), measures only the thin “skin” of the ocean but is widely used to quantify the thermal regimes on coral reefs across the globe. In situ measurements of temperature complements global satellite sea surface temperature with more accurate measurements at specific locations/depths on reefs and more detailed data. In 1999, an in situ temperature-monitoring network was started in the Republic of Palau after the 1998 coral bleaching event. Over two decades the network has grown to 70+ stations and 150+ instruments covering a 700 km wide geographic swath of the western Pacific dominated by multiple oceanic currents. The specific instruments used, depths, sampling intervals, precision, and accuracy are considered with two goals: to provide comprehensive general coverage to inform global considerations of temperature patterns/changes and to document the thermal dynamics of many specific habitats found within a highly diverse tropical marine location. Short-term in situ temperature monitoring may not capture broad patterns, particularly with regard to El Niño/La Niña cycles that produce extreme differences. Sampling over two decades has documented large T signals often invisible to SSST from (1) internal waves on time scales of minutes to hours, (2) El Niño on time scales of weeks to years, and (3) decadal-scale trends of +0.2 °C per decade. Network data have been used to create a regression model with SSST and sea surface height (SSH) capable of predicting depth-varying thermal stress. The large temporal, horizontal, and vertical variability noted by the network has further implications for thermal stress on the reef. There is a dearth of definitive thermal information for most coral reef habitats, which undermines the ability to interpret biological events from the most basic physical perspective.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | WAPITI, EC | AtlantOSEC| WAPITI ,EC| AtlantOSAuthors:Palmer, Matthew, D;
Palmer, Matthew, D
Palmer, Matthew, D in OpenAIREDurack, Paul, J;
Chidichimo, Maria, Paz; Church, John, A; +16 AuthorsDurack, Paul, J
Durack, Paul, J in OpenAIREPalmer, Matthew, D;
Palmer, Matthew, D
Palmer, Matthew, D in OpenAIREDurack, Paul, J;
Chidichimo, Maria, Paz; Church, John, A;Durack, Paul, J
Durack, Paul, J in OpenAIRECravatte, Sophie;
Hill, Katy; Johannessen, Johnny, A; Karstensen, Johannes;Cravatte, Sophie
Cravatte, Sophie in OpenAIRELee, Tong;
Legler, David; Mazloff, Matt; Oka, Eitarou;Lee, Tong
Lee, Tong in OpenAIREPurkey, Sarah;
Rabe, Ben; Sallée, Jean-Baptiste;Purkey, Sarah
Purkey, Sarah in OpenAIRESloyan, Bernadette, M;
Sloyan, Bernadette, M
Sloyan, Bernadette, M in OpenAIRESpeich, Sabrina;
von Schuckmann, Karina;Speich, Sabrina
Speich, Sabrina in OpenAIREWillis, Josh, K.;
Willis, Josh, K.
Willis, Josh, K. in OpenAIREWijffels, Susan;
Wijffels, Susan
Wijffels, Susan in OpenAIREConsiderable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
Frontiers in Marine ... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00416Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 4 Powered bymore_vert Frontiers in Marine ... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00416Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu