
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adequacy of the Ocean Observation System for Quantifying Regional Heat and Freshwater Storage and Change

Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
climate variability, Salinity, 550, FRESHWATER CONTENT, Heat content, Science, CLIMATE CHANGE, Freshwater content, Ocean Engineering, QH1-199.5, Aquatic Science, 551, [SDU.STU.OC] Sciences of the Universe [physics]/Earth Sciences/Oceanography, Oceanography, Ocean observing system, salinity, CLIMATE VARIABILITY, https://purl.org/becyt/ford/1.5, freshwater content, SALINITY, Climate change, observing system design, Climate variability, https://purl.org/becyt/ford/1, HEAT CONTENT, TEMPERATURE, [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography, Water Science and Technology, [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], Global and Planetary Change, OBSERVING SYSTEM DESIGN, ocean observing system, Q, Temperature, 500, temperature, General. Including nature conservation, geographical distribution, Observing system design, OCEAN OBSERVING SYSTEM, climate change, heat content
climate variability, Salinity, 550, FRESHWATER CONTENT, Heat content, Science, CLIMATE CHANGE, Freshwater content, Ocean Engineering, QH1-199.5, Aquatic Science, 551, [SDU.STU.OC] Sciences of the Universe [physics]/Earth Sciences/Oceanography, Oceanography, Ocean observing system, salinity, CLIMATE VARIABILITY, https://purl.org/becyt/ford/1.5, freshwater content, SALINITY, Climate change, observing system design, Climate variability, https://purl.org/becyt/ford/1, HEAT CONTENT, TEMPERATURE, [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography, Water Science and Technology, [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], Global and Planetary Change, OBSERVING SYSTEM DESIGN, ocean observing system, Q, Temperature, 500, temperature, General. Including nature conservation, geographical distribution, Observing system design, OCEAN OBSERVING SYSTEM, climate change, heat content
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
