- home
- Search
- Energy Research
- Research Collection
- Transport Research
- Energy Research
- Research Collection
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 15 Dec 2024 SwitzerlandPublisher:Elsevier BV Authors: Marta Fochesato; Christian Peter; Lisa Morandi; John Lygeros;The formation of power peaks caused by the stochastic nature of the electric vehicles (EVs) charging process is raising concerns related to the stability of the power grid. In this work, we consider an EV charging station equipped with a hydrogen-based energy storage system (HESS) and on-site renewable power generation, and we offer an experimental demonstration of its potential in reducing the power peak of the EV charging station, despite uncertainty in the demand. Our contributions are as follows: (1) we derive a complete system description of a real 4 MWh HESS, and (2) we develop a stochastic model-based receding horizon controller that jointly schedules the charging process and the HESS operation to minimize the power peak. The proposed approach is validated both in simulation and via experiments that demonstrate (i) excellent performance, with an average daily peak reduction of 49.2% with respect to the benchmark, and (ii) scalable run times, making it amenable to real-time operations even in the large EV penetration regime. Applied Energy, 376 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Informa UK Limited Authors: Marianna Charitonidou;This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. --> This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility.individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. Urban, Planning and Transport Research, 9 (1) ISSN:2165-0020
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Germany, Austria, Belgium, United Kingdom, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSERC, EC | CONSTRAINNSERC ,EC| CONSTRAINReto Knutti; Nadine Mengis; Nadine Mengis; Karsten Haustein; Christopher J. Smith; Katarzyna B. Tokarska; H. Damon Matthews; Sebastian Sippel; Joeri Rogelj; Joeri Rogelj; Andrew H. MacDougall; Piers M. Forster;AbstractThe remaining carbon budget quantifies the future CO2emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2Emissions (TCRE), as well as to non-CO2climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Embargo end date: 15 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | RESPONSE, EC | GREENFINEC| RESPONSE ,EC| GREENFINBjarne Steffen; Santiago del Val; Bessie Noll; Tobias S. Schmidt; Tobias S. Schmidt;In light of the Paris Agreement, road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets, a rapid transition to zero-carbon road-freight is necessary. However, limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition, this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that, when targeted, enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular, we find battery electric vehicles to show great promise in the light- and medium-duty segments, but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls, fuel costs, and CAPEX subsidies. Based on our analysis, we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach, increased efficiency, and increased policy flexibility. Applied Energy, 306 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 14 Feb 2023 Switzerland, Austria, Spain, Austria, United States, Germany, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:NIH | Sources, Transport, Expos...NIH| Sources, Transport, Exposure and Effects of PFASs (STEEP)Marlene Ågerstrand; Kenneth Arinaitwe; Thomas Backhaus; Ricardo Barra; Miriam L. Diamond; Joan O. Grimalt; Ksenia J. Groh; Faith Jebiwot Kandie; Perihan Binnur Kurt-Karakuş; Robert J. Letcher; Rainer Lohmann; Rodrigo Ornellas Meire; Temilola Oluseyi; Andreas Schäffer; Mochamad Septiono; Gabriel Sigmund; Anna Soehl; Temitope O. Sogbanmu; Noriyuki Suzuki; Marta Venier; Penny Vlahos; Martin Scheringer;doi: 10.1021/acs.est.2c08283 , 10.18154/rwth-2023-02901 , 10.60692/mkajn-90j78 , 10.3929/ethz-b-000624684 , 10.60692/p5kv1-hc373
pmid: 36716264
pmc: PMC9933528
handle: 10261/289281
doi: 10.1021/acs.est.2c08283 , 10.18154/rwth-2023-02901 , 10.60692/mkajn-90j78 , 10.3929/ethz-b-000624684 , 10.60692/p5kv1-hc373
pmid: 36716264
pmc: PMC9933528
handle: 10261/289281
Environmental science & technology 57(6), 2205-2208 (2023). doi:10.1021/acs.est.2c08283 Published by American Chemical Society, Columbus, Ohio
OceanRep arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022Embargo end date: 01 Jan 2022 France, Norway, Norway, Belgium, Denmark, Czech Republic, Finland, Italy, Germany, Netherlands, Switzerland, United Kingdom, Czech Republic, NetherlandsPublisher:American Meteorological Society Funded by:SNSF | ICOS-CH: Integrated Carbo..., EC | RINGO, AKA | ICOS - Integrated Carbon ... +6 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,EC| RINGO ,AKA| ICOS - Integrated Carbon Observation System: ICOS-ERIC Head Office ,EC| CoCO2 ,AKA| Integrated Carbon Observation System-European Research Infrastructure Consortium ,AKA| ICOS - Integrated Carbon Observation System; ICOS-Finland ,EC| VERIFY ,EC| ICOS ,SNSF| ICOS-CH Phase 2Heiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Papale, Dario; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Léonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex; Vesala, Timo; Vítková, Gabriela; Kutsch, Werner; Myhre, Cathrine;Abstract Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2°C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2022License: CC BYData sources: University of Groningen Research PortalOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2022License: CC BYData sources: University of Groningen Research PortalOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 15 Sep 2022 France, Austria, Germany, Switzerland, United Kingdom, Switzerland, United Kingdom, FrancePublisher:Copernicus GmbH Funded by:NSERC, SNSF | Ocean extremes in a warme..., EC | 4C +2 projectsNSERC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,EC| 4C ,EC| CRESCENDO ,EC| CONSTRAINC. D. Jones; T. L. Frölicher; T. L. Frölicher; C. Koven; A. H. MacDougall; H. D. Matthews; K. Zickfeld; J. Rogelj; J. Rogelj; K. B. Tokarska; K. B. Tokarska; N. P. Gillett; T. Ilyina; M. Meinshausen; M. Meinshausen; N. Mengis; N. Mengis; R. Séférian; M. Eby; F. A. Burger; F. A. Burger;Abstract. The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
OceanRep arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryGeoscientific Model DevelopmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryGeoscientific Model DevelopmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Effect of Eddies on South..., EC | CARBOCHANGESNSF| Effect of Eddies on Southern Ocean Water Mass Characteristics and Carbon Uptake, and its Sensitivity to Climate Change - Analysis of resolution dependence of climate model simulations ,EC| CARBOCHANGEStefan Kern; F. Alexander Haumann; Nicolas Gruber; Matthias Münnich; Ivy Frenger; Ivy Frenger;pmid: 27582222
Nature, 537 (7618) ISSN:0028-0836 ISSN:1476-4687
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 219 citations 219 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 Finland, Switzerland, NetherlandsPublisher:MDPI AG Authors: Mehdi Jahangir Samet; Heikki Liimatainen; Oscar Patrick René van Vliet; Markus Pöllänen;Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/823/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/219414Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2021 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/823/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/219414Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2021 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 15 Sep 2024 SwitzerlandPublisher:Elsevier BV Authors: Markus Kreft; Tobias Brudermueller; Elgar Fleisch; Thorsten Staake;Smart charging systems can reduce the stress on the power grid from electric vehicles by coordinating the charging process. To meet user requirements, such systems need input on charging demand, i.e., departure time and desired state of charge. Deriving these parameters through predictions based on past mobility patterns allows the inference of realistic values that offer flexibility by charging vehicles until they are actually needed for departure. While previous studies have addressed the task of charging demand predictions, there is a lack of work investigating the heterogeneity of user behavior, which affects prediction performance. In this work we predict the duration and energy of residential charging sessions using a dataset with 59,520 real-world measurements from 267 electric vehicles. While replicating the results put forth in related work, we additionally find substantial differences in prediction performance between individual vehicles. An in-depth analysis shows that vehicles that on average start charging later in the day can be predicted better than others. Furthermore, we demonstrate how knowledge that a vehicles charges over night significantly increases prediction performance, reducing the mean absolute percentage error of plugged-in duration predictions from over 200 % to 15 %. Based on these insights, we propose that residential smart charging systems should focus on predictions of overnight charging to determine charging demand. These sessions are most relevant for smart charging as they offer most flexibility and need for coordinated charging and, as we show, they are also more predictable, increasing user acceptance. Applied Energy, 370 ISSN:0306-2619 ISSN:1872-9118
Applied Energy arrow_drop_down University of St. Gallen: DSpaceArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down University of St. Gallen: DSpaceArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 15 Dec 2024 SwitzerlandPublisher:Elsevier BV Authors: Marta Fochesato; Christian Peter; Lisa Morandi; John Lygeros;The formation of power peaks caused by the stochastic nature of the electric vehicles (EVs) charging process is raising concerns related to the stability of the power grid. In this work, we consider an EV charging station equipped with a hydrogen-based energy storage system (HESS) and on-site renewable power generation, and we offer an experimental demonstration of its potential in reducing the power peak of the EV charging station, despite uncertainty in the demand. Our contributions are as follows: (1) we derive a complete system description of a real 4 MWh HESS, and (2) we develop a stochastic model-based receding horizon controller that jointly schedules the charging process and the HESS operation to minimize the power peak. The proposed approach is validated both in simulation and via experiments that demonstrate (i) excellent performance, with an average daily peak reduction of 49.2% with respect to the benchmark, and (ii) scalable run times, making it amenable to real-time operations even in the large EV penetration regime. Applied Energy, 376 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Informa UK Limited Authors: Marianna Charitonidou;This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. --> This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility.individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. Urban, Planning and Transport Research, 9 (1) ISSN:2165-0020
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Germany, Austria, Belgium, United Kingdom, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSERC, EC | CONSTRAINNSERC ,EC| CONSTRAINReto Knutti; Nadine Mengis; Nadine Mengis; Karsten Haustein; Christopher J. Smith; Katarzyna B. Tokarska; H. Damon Matthews; Sebastian Sippel; Joeri Rogelj; Joeri Rogelj; Andrew H. MacDougall; Piers M. Forster;AbstractThe remaining carbon budget quantifies the future CO2emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2Emissions (TCRE), as well as to non-CO2climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Embargo end date: 15 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | RESPONSE, EC | GREENFINEC| RESPONSE ,EC| GREENFINBjarne Steffen; Santiago del Val; Bessie Noll; Tobias S. Schmidt; Tobias S. Schmidt;In light of the Paris Agreement, road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets, a rapid transition to zero-carbon road-freight is necessary. However, limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition, this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that, when targeted, enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular, we find battery electric vehicles to show great promise in the light- and medium-duty segments, but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls, fuel costs, and CAPEX subsidies. Based on our analysis, we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach, increased efficiency, and increased policy flexibility. Applied Energy, 306 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 14 Feb 2023 Switzerland, Austria, Spain, Austria, United States, Germany, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:NIH | Sources, Transport, Expos...NIH| Sources, Transport, Exposure and Effects of PFASs (STEEP)Marlene Ågerstrand; Kenneth Arinaitwe; Thomas Backhaus; Ricardo Barra; Miriam L. Diamond; Joan O. Grimalt; Ksenia J. Groh; Faith Jebiwot Kandie; Perihan Binnur Kurt-Karakuş; Robert J. Letcher; Rainer Lohmann; Rodrigo Ornellas Meire; Temilola Oluseyi; Andreas Schäffer; Mochamad Septiono; Gabriel Sigmund; Anna Soehl; Temitope O. Sogbanmu; Noriyuki Suzuki; Marta Venier; Penny Vlahos; Martin Scheringer;doi: 10.1021/acs.est.2c08283 , 10.18154/rwth-2023-02901 , 10.60692/mkajn-90j78 , 10.3929/ethz-b-000624684 , 10.60692/p5kv1-hc373
pmid: 36716264
pmc: PMC9933528
handle: 10261/289281
doi: 10.1021/acs.est.2c08283 , 10.18154/rwth-2023-02901 , 10.60692/mkajn-90j78 , 10.3929/ethz-b-000624684 , 10.60692/p5kv1-hc373
pmid: 36716264
pmc: PMC9933528
handle: 10261/289281
Environmental science & technology 57(6), 2205-2208 (2023). doi:10.1021/acs.est.2c08283 Published by American Chemical Society, Columbus, Ohio
OceanRep arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022Embargo end date: 01 Jan 2022 France, Norway, Norway, Belgium, Denmark, Czech Republic, Finland, Italy, Germany, Netherlands, Switzerland, United Kingdom, Czech Republic, NetherlandsPublisher:American Meteorological Society Funded by:SNSF | ICOS-CH: Integrated Carbo..., EC | RINGO, AKA | ICOS - Integrated Carbon ... +6 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,EC| RINGO ,AKA| ICOS - Integrated Carbon Observation System: ICOS-ERIC Head Office ,EC| CoCO2 ,AKA| Integrated Carbon Observation System-European Research Infrastructure Consortium ,AKA| ICOS - Integrated Carbon Observation System; ICOS-Finland ,EC| VERIFY ,EC| ICOS ,SNSF| ICOS-CH Phase 2Heiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Papale, Dario; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Léonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex; Vesala, Timo; Vítková, Gabriela; Kutsch, Werner; Myhre, Cathrine;Abstract Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2°C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2022License: CC BYData sources: University of Groningen Research PortalOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2997159Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03411211Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2022License: CC BYData sources: University of Groningen Research PortalOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-19-0364.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 15 Sep 2022 France, Austria, Germany, Switzerland, United Kingdom, Switzerland, United Kingdom, FrancePublisher:Copernicus GmbH Funded by:NSERC, SNSF | Ocean extremes in a warme..., EC | 4C +2 projectsNSERC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,EC| 4C ,EC| CRESCENDO ,EC| CONSTRAINC. D. Jones; T. L. Frölicher; T. L. Frölicher; C. Koven; A. H. MacDougall; H. D. Matthews; K. Zickfeld; J. Rogelj; J. Rogelj; K. B. Tokarska; K. B. Tokarska; N. P. Gillett; T. Ilyina; M. Meinshausen; M. Meinshausen; N. Mengis; N. Mengis; R. Séférian; M. Eby; F. A. Burger; F. A. Burger;Abstract. The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
OceanRep arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryGeoscientific Model DevelopmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryGeoscientific Model DevelopmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Effect of Eddies on South..., EC | CARBOCHANGESNSF| Effect of Eddies on Southern Ocean Water Mass Characteristics and Carbon Uptake, and its Sensitivity to Climate Change - Analysis of resolution dependence of climate model simulations ,EC| CARBOCHANGEStefan Kern; F. Alexander Haumann; Nicolas Gruber; Matthias Münnich; Ivy Frenger; Ivy Frenger;pmid: 27582222
Nature, 537 (7618) ISSN:0028-0836 ISSN:1476-4687
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 219 citations 219 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 Finland, Switzerland, NetherlandsPublisher:MDPI AG Authors: Mehdi Jahangir Samet; Heikki Liimatainen; Oscar Patrick René van Vliet; Markus Pöllänen;Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/823/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/219414Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2021 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/823/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/219414Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2021 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 15 Sep 2024 SwitzerlandPublisher:Elsevier BV Authors: Markus Kreft; Tobias Brudermueller; Elgar Fleisch; Thorsten Staake;Smart charging systems can reduce the stress on the power grid from electric vehicles by coordinating the charging process. To meet user requirements, such systems need input on charging demand, i.e., departure time and desired state of charge. Deriving these parameters through predictions based on past mobility patterns allows the inference of realistic values that offer flexibility by charging vehicles until they are actually needed for departure. While previous studies have addressed the task of charging demand predictions, there is a lack of work investigating the heterogeneity of user behavior, which affects prediction performance. In this work we predict the duration and energy of residential charging sessions using a dataset with 59,520 real-world measurements from 267 electric vehicles. While replicating the results put forth in related work, we additionally find substantial differences in prediction performance between individual vehicles. An in-depth analysis shows that vehicles that on average start charging later in the day can be predicted better than others. Furthermore, we demonstrate how knowledge that a vehicles charges over night significantly increases prediction performance, reducing the mean absolute percentage error of plugged-in duration predictions from over 200 % to 15 %. Based on these insights, we propose that residential smart charging systems should focus on predictions of overnight charging to determine charging demand. These sessions are most relevant for smart charging as they offer most flexibility and need for coordinated charging and, as we show, they are also more predictable, increasing user acceptance. Applied Energy, 370 ISSN:0306-2619 ISSN:1872-9118
Applied Energy arrow_drop_down University of St. Gallen: DSpaceArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down University of St. Gallen: DSpaceArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu