- home
- Search
- Energy Research
- other engineering and technologies
- 13. Climate action
- 6. Clean water
- BE
- Energy Research
- other engineering and technologies
- 13. Climate action
- 6. Clean water
- BE
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: J. De Ruyck; V.K. Verma;Svend Bram;
Svend Bram; +1 AuthorsSvend Bram
Svend Bram in OpenAIREAbstract Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass ( Phalaris arundinacea ), pectin waste from citrus shells ( Citrus reticulata ), sunflower husk ( Helianthus annuus ), peat, wheat straw ( Triticum aestivum ) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO x ), sulphur oxides (SO x ) and flue dust mass concentrations (using DIN plus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm −3 , 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO x emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust DIN plus than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2010.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Funded by:EC | RECONECTEC| RECONECTAuthors:Skrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
+3 AuthorsKoetse, Mark
Koetse, Mark in OpenAIRESkrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
Aerts, Jeroen C.J.H.;Koetse, Mark
Koetse, Mark in OpenAIREde Ruiter, Marleen;
de Ruiter, Marleen
de Ruiter, Marleen in OpenAIREArnbjerg-Nielsen, Karsten;
Arnbjerg-Nielsen, Karsten
Arnbjerg-Nielsen, Karsten in OpenAIRENature-based solutions may actively reduce hydro-meteorological risks in urban areas as a part of climate change adaptation. However, the main reason for the increasing uptake of this type of solution is their many benefits for the local inhabitants, including recreational value. Previous studies on recreational value focus on studies of existing nature sites that are often much larger than what is considered as new NBS for flood adaptation studies in urban areas. We thus prioritized studies with smaller areas and nature types suitable for urban flood adaptation and divided them into four common nature types for urban flood adaptation: sustainable urban drainage systems, city parks, nature areas and rivers. We identified 23 primary valuation studies, including both stated and revealed preference studies, and derived two value transfer functions based on meta-regression analysis on existing areas. We investigated trends between values and variables and found that for the purpose of planning of new NBS the size of NBS and population density were determining factors of recreational value. For existing NBS the maximum travelling distance may be included as well. We find that existing state-of-the-art studies overestimate the recreational with more than a factor of 4 for NBS sizes below 5 ha. Our results are valid in a European context for nature-based solutions below 250 ha and can be applied across different NBS types and sizes.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Belgium, SwitzerlandPublisher:SAGE Publications Funded by:EC | ENERGISEEC| ENERGISEAuthors:Henrike Rau;
Grégoire Wallenborn; Grégoire Wallenborn;Henrike Rau
Henrike Rau in OpenAIREMarlyne Sahakian;
Marlyne Sahakian
Marlyne Sahakian in OpenAIREThis article demonstrates how a cultural reading of consumption that focuses on the meaning and materiality of domestic indoor microclimates can contribute to conceptual developments in the field of practice theory that refocus attention on cultural patterns, including prevailing norms and prescriptions regarding indoor temperature and thermal comfort. Drawing on evidence collected during a research-led change initiative that encouraged people to reduce energy use in the home by lowering indoor temperature to 18°C, we deploy the heuristic device of “indoor microclimate as artifact” to show how the manifestation of this new artifact initiated significant changes in everyday practices that revolve around heating. We observe that these changes may also spill over into the public sphere – from home to workplace. By making the microclimate a tangible and visible thing, we describe how people appropriate and appreciate this new object of consumption, what it says about different bodies in diverse and bounded spaces, and what the artifact as a commodity reveals about broader systems of heating and energy provision, and associated actors. Due to the increasing spread of central heating and the growing importance of complex technological devices to monitor and control indoor temperature, heating is no longer a practice in and of itself for many urban dwellers in Europe. However, when people appropriate the indoor microclimate, new heating-related practices emerge that can lead to energy sufficiency. We thus argue that by deliberately “materializing” domestic indoor microclimate as part of a change initiative, more sustainable forms of energy use can be made to matter.
Cultural Sociology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1749975520932439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cultural Sociology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1749975520932439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Abstract Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 CroatiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Erik Delarue;
Erik Delarue
Erik Delarue in OpenAIREKenneth Bruninx;
Yury Dvorkin; Daniel S. Kirschen; +2 AuthorsKenneth Bruninx
Kenneth Bruninx in OpenAIREErik Delarue;
Erik Delarue
Erik Delarue in OpenAIREKenneth Bruninx;
Yury Dvorkin; Daniel S. Kirschen; William D'haeseleer;Kenneth Bruninx
Kenneth Bruninx in OpenAIREHrvoje Pandzic;
Hrvoje Pandzic
Hrvoje Pandzic in OpenAIRERenewable electricity generation not only provides affordable and emission-free electricity but also introduces additional complexity in the day-ahead planning procedure. To address the stochastic nature of renewable generation, system operators must schedule enough controllable generation to have the flexibility required to compensate unavoidable real-time mismatches between the production and consumption of electricity. This flexibility must be scheduled ahead of real-time and comes at a cost, which should be minimized without compromising the operational reliability of the system. Energy storage facilities, such as pumped hydro energy storage (PHES), can respond quickly to mismatches between demand and generation. Hydraulic constraints on the operation of PHES must be taken into account in the day-ahead scheduling problem, which is typically not done in deterministic models. Stochastic optimization enhances the procurement of flexibility, but requires more computational resources than conventional deterministic optimization. This paper proposes a deterministic and an interval unit commitment formulation for the co-optimization of controllable generation and PHES, including a representation of the hydraulic constraints of the PHES. The proposed unit commitment (UC) models are tested against a stochastic UC formulation on a model of the Belgian power system to compare the resulting operational cost, reliability, and computational requirements. The cost-effective regulating capabilities offered by the PHES yield significant operational cost reductions in both models, while the increase in calculation times is limited.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2016Data sources: Croatian Scientific Bibliography - CROSBIIEEE Transactions on Sustainable EnergyArticle . 2016Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2015.2498555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 133 citations 133 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2016Data sources: Croatian Scientific Bibliography - CROSBIIEEE Transactions on Sustainable EnergyArticle . 2016Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2015.2498555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 BelgiumPublisher:Elsevier BV Authors:J. Van Nieuwenhuyse;
S. Lecompte;J. Van Nieuwenhuyse
J. Van Nieuwenhuyse in OpenAIREM. De Paepe;
M. De Paepe
M. De Paepe in OpenAIREhandle: 1854/LU-8767503
Supercritical heat transfer has already been applied for decades, as it has several benefits such as improved thermal efficiency of the thermodynamic cycle. Accurate knowledge about supercritical heat transfer and pressure drop of the different working fluids is required to design the heat exchangers and other components used in these systems. In literature, supercritical heat transfer of water and CO2 has already been widely investigated, the research involving refrigerants (for their application in low-temperature heat conversion systems) is however rather scarce. This paper gives an overview of the existing research on supercritical heat transfer. An overview of the applications, general characteristics and the main findings for water and other fluids are summarized. Due to the sharp variations in thermophysical properties, heat transfer and pressure drop cannot be accurately predicted on a single-phase based approach only. An in-detail review of the current research and status of knowledge about supercritical heat transfer of refrigerants is presented. The effect of the different investigated refrigerants and operating parameters on heat transfer and pressure drop, both for heating and cooling applications, is discussed. The remaining gaps in literature are highlighted, which include studies involving larger diameter tubes, horizontal flow, cooling heat transfer and pressure drop estimations and creation of a wider database for a more general correlation development and measurements on newer refrigerants (with low Global Warming Potentials) as these will become increasingly important in the near future. In addition, advances in numerical research should focus on development of suitable turbulence models. Overall, further improving the basic understanding of the fluid structure and occurrence of deteriorated heat transfer, as well as forming reliable models for the thermophysical properties are key in future efforts.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.119201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.119201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | BEIPDEC| BEIPDAuthors:Pujades, Estanislao;
Orban, Philippe;Pujades, Estanislao
Pujades, Estanislao in OpenAIREJurado, Anna;
Jurado, Anna
Jurado, Anna in OpenAIREAyora, Carlos;
+2 AuthorsAyora, Carlos
Ayora, Carlos in OpenAIREPujades, Estanislao;
Orban, Philippe;Pujades, Estanislao
Pujades, Estanislao in OpenAIREJurado, Anna;
Jurado, Anna
Jurado, Anna in OpenAIREAyora, Carlos;
Ayora, Carlos
Ayora, Carlos in OpenAIREBrouyère, Serge;
Brouyère, Serge
Brouyère, Serge in OpenAIREDassargues, Alain;
Dassargues, Alain
Dassargues, Alain in OpenAIREhandle: 10261/174782
Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH using abandoned coal mines may induce. © 2017 The Authors. Published by Elsevier Ltd. E. Pujades and A. Jurado gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2014/16 and 2015/17 fellows from “FP7-MSCA-COFUND, 600405”). This research has been supported by the Public Service of Wallonia – Department of Energy and Sustainable Building. Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 46 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:American Chemical Society (ACS) Authors: Bram De Meester; Jo Dewulf; Herman Van Langenhove;and Arnold Janssens;
and Arnold Janssens
and Arnold Janssens in OpenAIREdoi: 10.1021/es060167d
pmid: 17144320
The focus in environmental research is shifting from emission abatement to critical process analysis, including assessment of resource consumption. The exergy theory offers a thermodynamic methodology to account for the consumption of natural resources. However, exergy data on mineral resources available in the literature are inadequate to apply to exergetic life cycle analysis, due to incompleteness, inconsistencies, and a dated thermochemical basis. An uncertainty assessment of the data has to be performed as well. In this work, three recent thermochemical databases were applied to evaluate the chemical exergy of 85 elements and 73 minerals, 21 of which had not yet been quantified in the literature. The process required the choice of a new reference species for aluminum. Muscovite was selected, giving rise to a chemical exergy of 809.4 kJ/mol for aluminum. The theory proved to be robust for the exergy of chemical elements, as exergy values differing by 1.2% on average from most recent literature were found. On the contrary, the exergy values for minerals differed by factors up to 14 from literature values, due to the application of recent thermochemical values and consistently selected reference species. The consistent dataset of this work will enable straightforward resource intake evaluation through an exergetic life cycle assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es060167d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es060167d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Hindawi Limited Authors: Kris Voorspools; William D'haeseleer;doi: 10.1002/er.843
The decision whether or not to install small cogeneration for residential purposes mainly depends on individual economic considerations, combined with ecological awareness. Since in most cases, the economic balance is still unfavourable, government grants are considered in order to bridge this economic barrier. It is however still unclear how these grants are best spent to obtain an optimal environmental benefit. In the case of cogeneration, mainly static and simplified methods are used, completely neglecting the dynamic interaction between the cogeneration systems and the central power system and the dynamic response of the cogeneration units themselves. In this paper, these issues are discussed in two parts. The first part clarifies how an actual cogeneration unit, if necessary in combination with a back-up boiler and heat storage, will respond to a certain demand. For this purpose, experiments were performed to establish the transient and stationary behaviour of the system. It is shown that the transient heating of the cogeneration engine is rather slow (e.g. half an hour after cold start, the engine only produced 65% of the heat it would have in stationary regime) where the electric transient behaviour is negligible. In the second part of the paper, dynamic simulations are performed to quantify the impact (primary energy saving and reduction in greenhouse-gas emissions) of the massive installation of cogeneration for residential heating. Two important parameters are isolated. First, the interaction with the expansion of the central power system is very important. If the installation of cogeneration prevents the commissioning of new power plants, the potential energy saving and (especially) emission reduction are reduced. The second parameter is the annual use of the cogeneration units. Here, the potential energy saving and emission reduction increase with increasing annual use. Copyright © 2002 John Wiley & Sons, Ltd.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2002 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 53 citations 53 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2002 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Eliezer Ahmed Melo-Espinosa;
Eliezer Ahmed Melo-Espinosa
Eliezer Ahmed Melo-Espinosa in OpenAIRERamón Piloto-Rodríguez;
Ramón Piloto-Rodríguez
Ramón Piloto-Rodríguez in OpenAIRELeonardo Goyos-Pérez;
Leonardo Goyos-Pérez
Leonardo Goyos-Pérez in OpenAIRERoger Sierens;
+1 AuthorsRoger Sierens
Roger Sierens in OpenAIREEliezer Ahmed Melo-Espinosa;
Eliezer Ahmed Melo-Espinosa
Eliezer Ahmed Melo-Espinosa in OpenAIRERamón Piloto-Rodríguez;
Ramón Piloto-Rodríguez
Ramón Piloto-Rodríguez in OpenAIRELeonardo Goyos-Pérez;
Leonardo Goyos-Pérez
Leonardo Goyos-Pérez in OpenAIRERoger Sierens;
Roger Sierens
Roger Sierens in OpenAIRESebastian Verhelst;
Sebastian Verhelst
Sebastian Verhelst in OpenAIREAbstract Vegetable oils and animal fats represent promising alternatives to diesel engine fuel because they can be obtained from different feedstocks and renewable sources; also their properties are close to diesel fuel. The direct use of these biofuels as a diesel engine fuel can cause several problems in engine performance and emissions. In order to obtain a more engine-friendly fuel, it is necessary to change the biofuels’ properties for which different methods have been used. One of the possibilities is using emulsification techniques in order to obtain emulsified biofuels (emulsions or microemulsions); through this method it is possible to lower viscosity and improve the atomization. However, emulsification techniques applied to vegetable oils and animal fats have not been studied thoroughly. For this reason, this paper presents an overview on the formulation and characterization of the emulsified biofuels using vegetable oils and animal fats, as well as the main experimental results reported about its use as a diesel engine fuel in the scientific literature.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.03.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.03.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu