- home
- Search
- Energy Research
- 2016-2025
- nano-technology
- CN
- CA
- Energy Research
- 2016-2025
- nano-technology
- CN
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Guan, X; Xu, B; Wu, M; Jing, T; Yang, Y; Gao, Y;handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aashish Gaurav; Chau T.Q. Mai; Flora T. T. Ng; Stéphane Dumas;Production of biodiesel from yellow grease (waste cooking oil and waste animal fats) is fast emerging as a promising alternative to address the twin challenges before the biodiesel industry today-fluctuation in prices of vegetable oil and the food versus fuel debate. Yellow grease has a high percentage of free fatty acids (FFA) and proves to be an unsuitable feedstock for biodiesel production from commercially viable alkali-catalyzed production systems due to saponification problems.“Green” methodologies based on heterogeneous solid acid catalyzed reactions have the potential to simultaneously promote esterification and transesterification reactions of yellow grease to produce biodiesel without soap formation and offer easy catalyst separation without generation of toxic streams. This paper presents kinetic studies for the conversion of model yellow grease feeds to biodiesel using a heteropolyacid supported on alumina (HSiW/Al2O3) using a batch autoclave. Three model yellow grease feeds were prepared using canola oil with added FFA such as palmitic, oleic and linoleic acid. A pseudo homogeneous kinetic model for the parallel esterification and transesterification was developed. The rate constants and activation parameters for esterification and transesterification reactions for the model yellow grease feeds were determined. The rate constants for esterification are higher than the transesterification rate constants. The kinetic model was validated using the experimental biodiesel data obtained from processing a commercial yellow grease feed. The kinetic model could be used to design novel processes to convert various low-value waste oils, fats and non-food grade oils to sustainable biodiesel. Keywords: Yellow grease, Canola oil, Free fatty acids, Heteropolyacid, Kinetics for esterification and transesterification
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCChunbao (Charles) Xu; Chunbao (Charles) Xu; Shanghuan Feng; Gang Chen; An Li; Zhongshun Yuan; Takashi Kuboki; Tao Shui; Hengfu Shui;Abstract In this study, crude cellulose derived from cornstalk, after bleaching, was used as raw material for the synthesis of sodium carboxymethyl cellulose (CMC) by reacting with the cellulose with NaOH and chloroacetic acid at 75 °C for 1.5 h. Effects of alkali dosage, concentration of chloroacetic acid on the physical and chemical properties of the CMC products were investigated. It was revealed that the reactants alkali reagent/chloroacetic acid/cellulose at the molar ratio of 4.6:2.8:1and 4:2.5:1, or at the molar ratio of NaOH/ClCH 2 COOH ≈1.6–1.64, resulted in CMC products of relatively high water solubility. The viscosity-average molecular weight M v of these two CMC products obtained at molar ratios of 4.0:2.5:1 and 4.6:2.8:1 is in the range of 1.94 × 10 4 –2.48 × 10 4 g mol −1 , and the average DS of the two products are 0.57 and 0.85, respectively. As the solute concentration is above 2 wt%, the viscosity of the CMC-water solution exhibits nonlinear (exponential) increasing with increasing the solute concentration (typical of non-Newton fluids).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangxuan Yi; Qiyao Guo; Wei He; Qunwei Tang; Jialong Duan;Wide‐bandgap (WBG) perovskite solar cells (PSCs) are acknowledged as promising candidates for tandem solar cells and building photovoltaics. It is well known that cesium‐based all‐inorganic halide WBG perovskites possess the comparable optoelectronic properties as the organic–inorganic counterparts, but exhibit superior thermal stability. Among them, CsPbIBr2 is considered a feasible material for tandem solar cells after balancing the bandgap and stability of the inorganic perovskite. However, CsPbIBr2 PSCs are often subjected to drastic interfacial charge recombination especially in carbon‐based device structure derived from the chemical bonding defects (i.e., uncoordinated Pb2+) naked on CsPbIBr2 soft lattice, which dramatically limits overall efficiency of CsPbIBr2 WBG PSCs. Herein, a trimethyl ammonium salt hexyltrimethylammonium bromide is presented for CsPbIBr2/carbon interfacial modification. Benefiting from the −N+(CH3)3 passivation effect and −C6H13 hydrophobic alkyl chain, the optimal device with highly smooth morphology and sufficient charge extraction exhibits a champion power conversion efficiency of 11.24% and improved long‐term stability with 99.7% and 79.7% efficiency retention under dry air atmosphere and continuous 85 °C thermal stress, indicating the valuable potential application of the lattice solidified CsPbIBr2 WBG PSCs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xuefeng Liu; Xuke Li; Yage Li; Haijun Zhang; Quanli Jia; Shaowei Zhang; Wen Lei;doi: 10.1002/eom2.12261
AbstractRevolutionary changes in energy storage technology have put forward higher requirements on next‐generation anode materials for lithium‐ion battery. Recently, a new class of materials with complex stoichiometric ratios, high‐entropy oxide (HEO), has gradually emerging into sight and embracing the prosperity. The ideal elemental adjustability and attractive synergistic effect make HEO promising to break through the integrated performance bottleneck of conventional anodes and provide new impetus for the design and development of electrochemical energy storage materials. Here, the research progress of HEO anodes is comprehensively reviewed. The driving force behind phase stability, the role of individual cations, potential mechanisms for controlling properties, as well as state‐of‐the‐art synthetic strategies and modification approaches are critically evaluated. Finally, we envision the future prospects and related challenges in this field, which will bring some enlightening guidance and criteria for researchers to further unlock the mysteries of HEO anodes.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Guo-Jun Xie; Yu Lou; Bing-Feng Liu; Jing Wang; Anran Fang; Han Cui; Defeng Xing; Yang Yang;pmid: 33310211
Inert gas is often used in the deoxygenation of microbial electrolysis cells (MECs) to maintain growth and viability of anaerobes. However, the effects of the gas atmosphere on hydrogen production and microbial community of MECs are often neglected. Here, the performances and biofilm microbiomes of MECs pre-sparged with different gases were compared. MECs pre-sparged with argon gas (Ar) yielded more hydrogen (3.73 ± 0.13 mol-H2/mol-acetate) and a higher hydrogen production rate (2.99 ± 0.17 L-H2/L-reactor-day) than MECs pre-sparged with N2 (3.41 ± 0.13 mol-H2/mol-acetate and 2.27 ± 0.28 L-H2/L-reactor-day, respectively). Microbiome analysis indicated that the relative abundance of Geobacter increased from 59.25% to 77.79% when the gas atmosphere in MECs shifted from N2 to Ar. Hydrogen production may have been catalyzed by nitrogenase from Geobacter and photosynthetic bacteria in MECs pre-sparged with Ar. These findings suggested that the gas atmosphere substantially influences the microbiome of anode biofilms and Ar sparging is most effective for enhancing hydrogen production in MECs.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Wiley Funded by:UKRI | Control of spin and coher...UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structuresSergei Lopatin; Iain McCulloch; Iain McCulloch; Rawad K. Hallani; Hu Chen; Daniel Bryant; Lewis Cater; Marios Neophytou; Wan Yue; Wan Yue;AbstractThis work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2‐b][1]benzothiophene isoindigo (TBTI)‐containing low bandgap donor–acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron‐rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high‐resolution electron energy loss spectroscopy is used to investigate the phase‐separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Jia Li; Lixun Cheng; Fei Wang; Li Li; Yanming Wang; Song Dai; Yongxing Zhang; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c9se00770a
Mixed transition metal oxides with high theoretical capacity show great potential to replace carbonaceous anode materials in lithium-ion batteries.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Meisheng Han; Yongbiao Mu; Jie Yu;SnOx attracts considerable attention as an anode of lithium‐ion batteries (LIBs) because of its high theoretical capacity. However, SnOx suffers from poor cyclability and rate capability caused by large volume change upon cycling and low conductivity, which severely limits its application for LIBs. Herein, a nanocomposite of Sn/SnO2/C is synthesized for the first time under an elevated pressure originated from the pyrolysis of dimethyltin oxide in a sealed vessel. The Sn/SnO2/C nanocomposite consists of a homogeneous dispersion of Sn and SnO2 nanocrystals (<10 nm) into the carbon matrix, which endows it with an enhanced lithium storage performance. The Sn/SnO2/C nanocomposite delivers an excellent cyclability (0.025% capacity loss per cycle during 1000 cycles at 1 A g−1) with an improved rate performance (243.8 mAh g−1 at 5 A g−1).
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Guan, X; Xu, B; Wu, M; Jing, T; Yang, Y; Gao, Y;handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aashish Gaurav; Chau T.Q. Mai; Flora T. T. Ng; Stéphane Dumas;Production of biodiesel from yellow grease (waste cooking oil and waste animal fats) is fast emerging as a promising alternative to address the twin challenges before the biodiesel industry today-fluctuation in prices of vegetable oil and the food versus fuel debate. Yellow grease has a high percentage of free fatty acids (FFA) and proves to be an unsuitable feedstock for biodiesel production from commercially viable alkali-catalyzed production systems due to saponification problems.“Green” methodologies based on heterogeneous solid acid catalyzed reactions have the potential to simultaneously promote esterification and transesterification reactions of yellow grease to produce biodiesel without soap formation and offer easy catalyst separation without generation of toxic streams. This paper presents kinetic studies for the conversion of model yellow grease feeds to biodiesel using a heteropolyacid supported on alumina (HSiW/Al2O3) using a batch autoclave. Three model yellow grease feeds were prepared using canola oil with added FFA such as palmitic, oleic and linoleic acid. A pseudo homogeneous kinetic model for the parallel esterification and transesterification was developed. The rate constants and activation parameters for esterification and transesterification reactions for the model yellow grease feeds were determined. The rate constants for esterification are higher than the transesterification rate constants. The kinetic model was validated using the experimental biodiesel data obtained from processing a commercial yellow grease feed. The kinetic model could be used to design novel processes to convert various low-value waste oils, fats and non-food grade oils to sustainable biodiesel. Keywords: Yellow grease, Canola oil, Free fatty acids, Heteropolyacid, Kinetics for esterification and transesterification
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCChunbao (Charles) Xu; Chunbao (Charles) Xu; Shanghuan Feng; Gang Chen; An Li; Zhongshun Yuan; Takashi Kuboki; Tao Shui; Hengfu Shui;Abstract In this study, crude cellulose derived from cornstalk, after bleaching, was used as raw material for the synthesis of sodium carboxymethyl cellulose (CMC) by reacting with the cellulose with NaOH and chloroacetic acid at 75 °C for 1.5 h. Effects of alkali dosage, concentration of chloroacetic acid on the physical and chemical properties of the CMC products were investigated. It was revealed that the reactants alkali reagent/chloroacetic acid/cellulose at the molar ratio of 4.6:2.8:1and 4:2.5:1, or at the molar ratio of NaOH/ClCH 2 COOH ≈1.6–1.64, resulted in CMC products of relatively high water solubility. The viscosity-average molecular weight M v of these two CMC products obtained at molar ratios of 4.0:2.5:1 and 4.6:2.8:1 is in the range of 1.94 × 10 4 –2.48 × 10 4 g mol −1 , and the average DS of the two products are 0.57 and 0.85, respectively. As the solute concentration is above 2 wt%, the viscosity of the CMC-water solution exhibits nonlinear (exponential) increasing with increasing the solute concentration (typical of non-Newton fluids).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangxuan Yi; Qiyao Guo; Wei He; Qunwei Tang; Jialong Duan;Wide‐bandgap (WBG) perovskite solar cells (PSCs) are acknowledged as promising candidates for tandem solar cells and building photovoltaics. It is well known that cesium‐based all‐inorganic halide WBG perovskites possess the comparable optoelectronic properties as the organic–inorganic counterparts, but exhibit superior thermal stability. Among them, CsPbIBr2 is considered a feasible material for tandem solar cells after balancing the bandgap and stability of the inorganic perovskite. However, CsPbIBr2 PSCs are often subjected to drastic interfacial charge recombination especially in carbon‐based device structure derived from the chemical bonding defects (i.e., uncoordinated Pb2+) naked on CsPbIBr2 soft lattice, which dramatically limits overall efficiency of CsPbIBr2 WBG PSCs. Herein, a trimethyl ammonium salt hexyltrimethylammonium bromide is presented for CsPbIBr2/carbon interfacial modification. Benefiting from the −N+(CH3)3 passivation effect and −C6H13 hydrophobic alkyl chain, the optimal device with highly smooth morphology and sufficient charge extraction exhibits a champion power conversion efficiency of 11.24% and improved long‐term stability with 99.7% and 79.7% efficiency retention under dry air atmosphere and continuous 85 °C thermal stress, indicating the valuable potential application of the lattice solidified CsPbIBr2 WBG PSCs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Xuefeng Liu; Xuke Li; Yage Li; Haijun Zhang; Quanli Jia; Shaowei Zhang; Wen Lei;doi: 10.1002/eom2.12261
AbstractRevolutionary changes in energy storage technology have put forward higher requirements on next‐generation anode materials for lithium‐ion battery. Recently, a new class of materials with complex stoichiometric ratios, high‐entropy oxide (HEO), has gradually emerging into sight and embracing the prosperity. The ideal elemental adjustability and attractive synergistic effect make HEO promising to break through the integrated performance bottleneck of conventional anodes and provide new impetus for the design and development of electrochemical energy storage materials. Here, the research progress of HEO anodes is comprehensively reviewed. The driving force behind phase stability, the role of individual cations, potential mechanisms for controlling properties, as well as state‐of‐the‐art synthetic strategies and modification approaches are critically evaluated. Finally, we envision the future prospects and related challenges in this field, which will bring some enlightening guidance and criteria for researchers to further unlock the mysteries of HEO anodes.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Guo-Jun Xie; Yu Lou; Bing-Feng Liu; Jing Wang; Anran Fang; Han Cui; Defeng Xing; Yang Yang;pmid: 33310211
Inert gas is often used in the deoxygenation of microbial electrolysis cells (MECs) to maintain growth and viability of anaerobes. However, the effects of the gas atmosphere on hydrogen production and microbial community of MECs are often neglected. Here, the performances and biofilm microbiomes of MECs pre-sparged with different gases were compared. MECs pre-sparged with argon gas (Ar) yielded more hydrogen (3.73 ± 0.13 mol-H2/mol-acetate) and a higher hydrogen production rate (2.99 ± 0.17 L-H2/L-reactor-day) than MECs pre-sparged with N2 (3.41 ± 0.13 mol-H2/mol-acetate and 2.27 ± 0.28 L-H2/L-reactor-day, respectively). Microbiome analysis indicated that the relative abundance of Geobacter increased from 59.25% to 77.79% when the gas atmosphere in MECs shifted from N2 to Ar. Hydrogen production may have been catalyzed by nitrogenase from Geobacter and photosynthetic bacteria in MECs pre-sparged with Ar. These findings suggested that the gas atmosphere substantially influences the microbiome of anode biofilms and Ar sparging is most effective for enhancing hydrogen production in MECs.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Saudi ArabiaPublisher:Wiley Funded by:UKRI | Control of spin and coher...UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structuresSergei Lopatin; Iain McCulloch; Iain McCulloch; Rawad K. Hallani; Hu Chen; Daniel Bryant; Lewis Cater; Marios Neophytou; Wan Yue; Wan Yue;AbstractThis work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2‐b][1]benzothiophene isoindigo (TBTI)‐containing low bandgap donor–acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron‐rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high‐resolution electron energy loss spectroscopy is used to investigate the phase‐separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Jia Li; Lixun Cheng; Fei Wang; Li Li; Yanming Wang; Song Dai; Yongxing Zhang; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c9se00770a
Mixed transition metal oxides with high theoretical capacity show great potential to replace carbonaceous anode materials in lithium-ion batteries.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Meisheng Han; Yongbiao Mu; Jie Yu;SnOx attracts considerable attention as an anode of lithium‐ion batteries (LIBs) because of its high theoretical capacity. However, SnOx suffers from poor cyclability and rate capability caused by large volume change upon cycling and low conductivity, which severely limits its application for LIBs. Herein, a nanocomposite of Sn/SnO2/C is synthesized for the first time under an elevated pressure originated from the pyrolysis of dimethyltin oxide in a sealed vessel. The Sn/SnO2/C nanocomposite consists of a homogeneous dispersion of Sn and SnO2 nanocrystals (<10 nm) into the carbon matrix, which endows it with an enhanced lithium storage performance. The Sn/SnO2/C nanocomposite delivers an excellent cyclability (0.025% capacity loss per cycle during 1000 cycles at 1 A g−1) with an improved rate performance (243.8 mAh g−1 at 5 A g−1).
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201901202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu