- home
- Search
- Energy Research
- Restricted
- 7. Clean energy
- 14. Life underwater
- CN
- Energy Research
- Restricted
- 7. Clean energy
- 14. Life underwater
- CN
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Wang, Jin; Mora-Sero, Ivan; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan;doi: 10.1021/ja4079804
pmid: 24070636
Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja4079804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 399 citations 399 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 5visibility views 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja4079804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, SwedenPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SANSEC| SANSHaining Tian; Peter W. Lohse; Licheng Sun; Licheng Sun; Erik Gabrielsson; Anders Hagfeldt; Lars Kloo; Nikolaos Vlachopoulos;doi: 10.1039/c2ee23263d
A water-soluble organic redox couple (TT−/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Elsevier BV Authors: Huang, Liping; Zeng , Raymond J.; Angelidaki, Irini;pmid: 17964145
Electricity generation integrated with xylose degradation was investigated in a two-chamber mediator-less microbial fuel cell (MFC). Voltage output followed saturation kinetics as a function of xylose concentration for concentration below 9.7 mM, with a predicted maximum of 86 mV (6.3 mW m(-2) or 116 mW m(-3)) and half-saturation constant (K(s)) of 0.29 mM. Xylose concentrations from 0.5 mM to 1.5 mM resulted in coulombic efficiencies and maximum voltage ranging from 41+/-1.6% to 36+/-1.2% and 55+/-2.0 mV to 70+/-3.0 mV respectively. Xylose degradation rate increased with increasing xylose concentration up to 9.7 mM and the predicted maximum degradation rate was 0.13 mM h(-1) and K(s) of 3.0 mM. Stirring by nitrogen in the anode chamber led to 99+/-2.3 mV maximum voltage (8.4+/-0.4 mW m(-2) or 153+/-7.1 mW m(-3)) and 5.9+/-0.3% coulombic efficiency at MFC running time 180 h, which were respectively 17+/-1.2% and 37+/-1.8%, higher than those without stirring. The COD removal under stirring was 22.1+/-0.3%, which was slightly lower than that of 23.7+/-0.4% under no stirring. However, stirring resulted in 59% lower xylose degradation rate. This work demonstrates that xylose can be used in the MFC for electricity production. Comparatively higher electricity generation and coulombic efficiency can be obtained by adjusting initial xylose concentration and applying stirring in the anode chamber.
Research at ASB arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Research at ASB arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Li, Furong; Marangon-Lima, Jose Wanderley; Rudnick, Hugh; Marangon-Lima, Luana Medeiros; +4 AuthorsLi, Furong; Marangon-Lima, Jose Wanderley; Rudnick, Hugh; Marangon-Lima, Luana Medeiros; Padhy, Narayana Prasad; Brunekreeft, Gert; Reneses, Javier; Kang, Chongqing;handle: 11531/4826 , 10161/18144
Artículos en revistas Energy transportation costs typically make up a quarter of consumers? electricity bills, and most of this amount (90% in the United Kingdom, 75% in Brazil and Spain, and 60% in India, for example) is due to energy transportation through the distribution network. This cost could escalate over the next few decades as distributed energy resources are expected to grow substantially in response to the financial incentives many governments have created for renewable and efficient generation to meet their CO2 reduction targets. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Power and Energy MagazineArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2015.2416112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Power and Energy MagazineArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2015.2416112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Hongguang Nie; Hongguang Nie; René Kemp; Jin-Hua Xu; Ying Fan; Véronique Vasseur;Abstract In this study, we investigate the driving forces behind the changes in residential energy consumption (REC) in China’s urban and rural areas over the 2001–2012 period. Based on the logarithmic mean Divisia index method, the REC changes are decomposed into seven driving forces, which are climate change, energy price, energy expenditure mix, energy cost share (in total expenditure), expenditure share (in income), per capita income and population effects. According to the results, climate effect due to increasing days with abnormal temperature, energy cost share effect characterized by more expenditure to be paid for energy use, income effect describing constant income growth in the residential sector definitely increase REC in both urban and rural areas. In contrast, energy prices and energy expenditure mix effects negatively contribute to the REC increase, respectively because of the increase in energy prices and the transition from the low-priced energy to high-priced energy. Expenditure share and population effects play opposite roles in urban and rural areas, and the reasons and implications are analysed in depth.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.11.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.11.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Authors: Klemeš, Jiří Jaromír; Varbanov, Petar Sabev; Wang, Qiuwang; Lund, Henrik;Abstract This Special Section provides introduction to the 15th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2012). In this editorial introduction, the editors are highlighting the individual articles included in this issue and discussing the main points. The main areas of this issue can be summarised as: Process Integration for Energy Saving, Integrating Renewable Energy Sources and Energy Optimisation issues.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.05.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.05.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:AIP Publishing Funded by:EC | MMFCSEC| MMFCSChao Yang; Guogang Yang; Danting Yue; Bengt Sundén; Jinliang Yuan;doi: 10.1063/1.4798789
A 3D model is developed to describe an anode-supported planar solid oxide fuel cell (SOFC), by Ansys/Fluent evaluating reactions including methane steam reforming (MSR)/water-gas shift (WGSR) reactions in thick anode layer and H2-O2/CO-O2 electrochemical reactions in anode active layer, coupled with heat, mass species, momentum, and ion/electron charges transport processes in SOFC. The predicted results indicate that electron/ion exchange appears in the very thin region in active layers (0.018 mm in anode and 0.01 mm in cathode), based on three phase boundary, operating temperature and concentration of reactants (mainly H2). Active polarization happening in active layers dominates over concentration and ohmic losses. High gradient of current density exists near interface between electrode and solid conductor due to the block by gas channel. It is also found the reaction rates of MSR and WGSR along main flow direction and cell thickness direction decrease due to low concentration of fuel (CH4) caused by mass consumption. With increasing operating temperature from 978 K to 1088 K, the current density and the reaction rate of MSR are increased by 10.8% and 5.4%, respectively. While ion current density is 52.9% higher than in standard case, and H2 is consumed by 5.1% more when ion conductivity is doubled. CO-O2 has been considered in charge transfer reaction in anode active layer and it is found that the current density and species distributions are not sensitive, but WGSR reaction will be forced backwards to supply more CO for CO-O2 electrochemical reaction.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2013Data sources: European Research Council (ERC)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4798789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2013Data sources: European Research Council (ERC)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4798789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Shao, Bingbing; Zhao, Shuqiang; Gao, Benfeng; Yang, Yongheng; Blaabjerg, Frede;Abstract Field experiences have shown that sub-synchronous oscillation (SSO) can occur in direct-drive wind farms with VSC-HVDC systems. Due to the complexity of the detailed wind farm model, a dynamic equivalent model, with a reasonable order reduction of the detailed model and still reflecting inside-wind-farm and wind-farm-grid SSO characteristics is essential. In this paper, based on the principle that similar matrices have identical eigenvalues, the SSO analysis of an N-machine wind farm with VSC-HVDC system is conducted by simplifying it into two single-machine systems. The modeling method of the two single-machine systems is presented. Four case studies are presented to verify the effectiveness of the proposed model when compared with the detailed model in various scenarios. The proposed model is also benchmarked with the output multiplication-based equivalent model (OMM). Comparison results show that although the system order is reduced significantly, the proposed simplified equivalent model can still reflect inside-wind-farm and wind-farm-grid SSO modes in various scenarios. Meanwhile, the rationality of the OMM in terms of the wind-farm-grid SSO analysis is verified theoretically.
VBN arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic GraphAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2020.106498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic GraphAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2020.106498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Elsevier BV Peter Lund; Manish Singh; Liangdong Fan; Bin Zhu; Bin Zhu; Janne Patakangas; Rizwan Raza; Rizwan Raza; Qiu-An Huang; Qiu-An Huang;Abstract Electrolyte-separator-free fuel cell (EFFC) is a new emerging energy conversion technology. The EFFC consists of a single-component of nanocomposite material which works as a one-layer fuel cell device contrary to the traditional three-layer anode–electrolyte–cathode structure, in which an electrolyte layer plays a critical role. The nanocomposite of a single homogenous layer consists of a mixture of semiconducting and ionic materials that provides the necessary electrochemical reaction sites and charge transport paths for a fuel cell. These can be accomplished through tailoring ionic and electronic (n, p) conductivities and catalyst activities, which enable redox reactions to occur on nano-particles and finally accomplish a fuel cell function.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Wei Tu; Paolo Santi; Tianhong Zhao; Xiaoyi He; Qingquan Li; Lei Dong; Timothy J. Wallington; Carlo Ratti;The acceptability, energy consumption, and environmental benefits of electric vehicles are highly dependent on travel patterns. With increasing ride-hailing popularity in mega-cities, urban mobility patterns are greatly changing; therefore, an investigation of the extent to which electric vehicles would satisfy the needs of ride-hailing drivers becomes important to support sustainable urban growth. A first step in this direction is reported here. GPS-trajectories of 144,867 drivers over 104 million km in Beijing were used to quantify the potential acceptability, energy consumption, and costs of ride-hailing electric vehicle fleets. Average daily travel distance and travel time for ride-hailing drivers was determined to be 129.4 km and 5.7 h; these values are substantially larger than those for household drivers (40.0 km and 1.5 h). Assuming slow level-1 (1.8 KW) or moderate level-2 (7.2 KW) charging is available at all home parking locations, battery electric vehicles with 200 km all electric range (BEV200) could be used by up to 47% or 78% of ride-hailing drivers and electrify up to 20% or 55% of total distance driven by the ride-hailing fleet. With level-2 charging available at home, work, and public parking, the acceptance ceiling increases to up to 91% of drivers and 80% of distance. Our study suggests that long range BEVs and widespread level-2 charging infrastructure are needed for large-scale electrification of ride-hailing mobility in Beijing. The marginal benefits of increased all electric range, effects on charging infrastructure distribution, and payback times are also presented and discussed. Given the observed heterogeneity of ride-hailing vehicle travel, our study outlines the importance of individual-level analysis to understand the electrification potential and future benefits of electric vehicles in the era of shared smart transportation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Wang, Jin; Mora-Sero, Ivan; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan;doi: 10.1021/ja4079804
pmid: 24070636
Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja4079804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 399 citations 399 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 5visibility views 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja4079804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Switzerland, SwedenPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SANSEC| SANSHaining Tian; Peter W. Lohse; Licheng Sun; Licheng Sun; Erik Gabrielsson; Anders Hagfeldt; Lars Kloo; Nikolaos Vlachopoulos;doi: 10.1039/c2ee23263d
A water-soluble organic redox couple (TT−/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee23263d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Elsevier BV Authors: Huang, Liping; Zeng , Raymond J.; Angelidaki, Irini;pmid: 17964145
Electricity generation integrated with xylose degradation was investigated in a two-chamber mediator-less microbial fuel cell (MFC). Voltage output followed saturation kinetics as a function of xylose concentration for concentration below 9.7 mM, with a predicted maximum of 86 mV (6.3 mW m(-2) or 116 mW m(-3)) and half-saturation constant (K(s)) of 0.29 mM. Xylose concentrations from 0.5 mM to 1.5 mM resulted in coulombic efficiencies and maximum voltage ranging from 41+/-1.6% to 36+/-1.2% and 55+/-2.0 mV to 70+/-3.0 mV respectively. Xylose degradation rate increased with increasing xylose concentration up to 9.7 mM and the predicted maximum degradation rate was 0.13 mM h(-1) and K(s) of 3.0 mM. Stirring by nitrogen in the anode chamber led to 99+/-2.3 mV maximum voltage (8.4+/-0.4 mW m(-2) or 153+/-7.1 mW m(-3)) and 5.9+/-0.3% coulombic efficiency at MFC running time 180 h, which were respectively 17+/-1.2% and 37+/-1.8%, higher than those without stirring. The COD removal under stirring was 22.1+/-0.3%, which was slightly lower than that of 23.7+/-0.4% under no stirring. However, stirring resulted in 59% lower xylose degradation rate. This work demonstrates that xylose can be used in the MFC for electricity production. Comparatively higher electricity generation and coulombic efficiency can be obtained by adjusting initial xylose concentration and applying stirring in the anode chamber.
Research at ASB arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Research at ASB arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.08.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Li, Furong; Marangon-Lima, Jose Wanderley; Rudnick, Hugh; Marangon-Lima, Luana Medeiros; +4 AuthorsLi, Furong; Marangon-Lima, Jose Wanderley; Rudnick, Hugh; Marangon-Lima, Luana Medeiros; Padhy, Narayana Prasad; Brunekreeft, Gert; Reneses, Javier; Kang, Chongqing;handle: 11531/4826 , 10161/18144
Artículos en revistas Energy transportation costs typically make up a quarter of consumers? electricity bills, and most of this amount (90% in the United Kingdom, 75% in Brazil and Spain, and 60% in India, for example) is due to energy transportation through the distribution network. This cost could escalate over the next few decades as distributed energy resources are expected to grow substantially in response to the financial incentives many governments have created for renewable and efficient generation to meet their CO2 reduction targets. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Power and Energy MagazineArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2015.2416112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Power and Energy MagazineArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2015.2416112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Hongguang Nie; Hongguang Nie; René Kemp; Jin-Hua Xu; Ying Fan; Véronique Vasseur;Abstract In this study, we investigate the driving forces behind the changes in residential energy consumption (REC) in China’s urban and rural areas over the 2001–2012 period. Based on the logarithmic mean Divisia index method, the REC changes are decomposed into seven driving forces, which are climate change, energy price, energy expenditure mix, energy cost share (in total expenditure), expenditure share (in income), per capita income and population effects. According to the results, climate effect due to increasing days with abnormal temperature, energy cost share effect characterized by more expenditure to be paid for energy use, income effect describing constant income growth in the residential sector definitely increase REC in both urban and rural areas. In contrast, energy prices and energy expenditure mix effects negatively contribute to the REC increase, respectively because of the increase in energy prices and the transition from the low-priced energy to high-priced energy. Expenditure share and population effects play opposite roles in urban and rural areas, and the reasons and implications are analysed in depth.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.11.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.11.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Authors: Klemeš, Jiří Jaromír; Varbanov, Petar Sabev; Wang, Qiuwang; Lund, Henrik;Abstract This Special Section provides introduction to the 15th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2012). In this editorial introduction, the editors are highlighting the individual articles included in this issue and discussing the main points. The main areas of this issue can be summarised as: Process Integration for Energy Saving, Integrating Renewable Energy Sources and Energy Optimisation issues.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.05.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.05.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:AIP Publishing Funded by:EC | MMFCSEC| MMFCSChao Yang; Guogang Yang; Danting Yue; Bengt Sundén; Jinliang Yuan;doi: 10.1063/1.4798789
A 3D model is developed to describe an anode-supported planar solid oxide fuel cell (SOFC), by Ansys/Fluent evaluating reactions including methane steam reforming (MSR)/water-gas shift (WGSR) reactions in thick anode layer and H2-O2/CO-O2 electrochemical reactions in anode active layer, coupled with heat, mass species, momentum, and ion/electron charges transport processes in SOFC. The predicted results indicate that electron/ion exchange appears in the very thin region in active layers (0.018 mm in anode and 0.01 mm in cathode), based on three phase boundary, operating temperature and concentration of reactants (mainly H2). Active polarization happening in active layers dominates over concentration and ohmic losses. High gradient of current density exists near interface between electrode and solid conductor due to the block by gas channel. It is also found the reaction rates of MSR and WGSR along main flow direction and cell thickness direction decrease due to low concentration of fuel (CH4) caused by mass consumption. With increasing operating temperature from 978 K to 1088 K, the current density and the reaction rate of MSR are increased by 10.8% and 5.4%, respectively. While ion current density is 52.9% higher than in standard case, and H2 is consumed by 5.1% more when ion conductivity is doubled. CO-O2 has been considered in charge transfer reaction in anode active layer and it is found that the current density and species distributions are not sensitive, but WGSR reaction will be forced backwards to supply more CO for CO-O2 electrochemical reaction.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2013Data sources: European Research Council (ERC)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4798789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2013Data sources: European Research Council (ERC)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4798789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Shao, Bingbing; Zhao, Shuqiang; Gao, Benfeng; Yang, Yongheng; Blaabjerg, Frede;Abstract Field experiences have shown that sub-synchronous oscillation (SSO) can occur in direct-drive wind farms with VSC-HVDC systems. Due to the complexity of the detailed wind farm model, a dynamic equivalent model, with a reasonable order reduction of the detailed model and still reflecting inside-wind-farm and wind-farm-grid SSO characteristics is essential. In this paper, based on the principle that similar matrices have identical eigenvalues, the SSO analysis of an N-machine wind farm with VSC-HVDC system is conducted by simplifying it into two single-machine systems. The modeling method of the two single-machine systems is presented. Four case studies are presented to verify the effectiveness of the proposed model when compared with the detailed model in various scenarios. The proposed model is also benchmarked with the output multiplication-based equivalent model (OMM). Comparison results show that although the system order is reduced significantly, the proposed simplified equivalent model can still reflect inside-wind-farm and wind-farm-grid SSO modes in various scenarios. Meanwhile, the rationality of the OMM in terms of the wind-farm-grid SSO analysis is verified theoretically.
VBN arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic GraphAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2020.106498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic GraphAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2020.106498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Elsevier BV Peter Lund; Manish Singh; Liangdong Fan; Bin Zhu; Bin Zhu; Janne Patakangas; Rizwan Raza; Rizwan Raza; Qiu-An Huang; Qiu-An Huang;Abstract Electrolyte-separator-free fuel cell (EFFC) is a new emerging energy conversion technology. The EFFC consists of a single-component of nanocomposite material which works as a one-layer fuel cell device contrary to the traditional three-layer anode–electrolyte–cathode structure, in which an electrolyte layer plays a critical role. The nanocomposite of a single homogenous layer consists of a mixture of semiconducting and ionic materials that provides the necessary electrochemical reaction sites and charge transport paths for a fuel cell. These can be accomplished through tailoring ionic and electronic (n, p) conductivities and catalyst activities, which enable redox reactions to occur on nano-particles and finally accomplish a fuel cell function.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2013.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Wei Tu; Paolo Santi; Tianhong Zhao; Xiaoyi He; Qingquan Li; Lei Dong; Timothy J. Wallington; Carlo Ratti;The acceptability, energy consumption, and environmental benefits of electric vehicles are highly dependent on travel patterns. With increasing ride-hailing popularity in mega-cities, urban mobility patterns are greatly changing; therefore, an investigation of the extent to which electric vehicles would satisfy the needs of ride-hailing drivers becomes important to support sustainable urban growth. A first step in this direction is reported here. GPS-trajectories of 144,867 drivers over 104 million km in Beijing were used to quantify the potential acceptability, energy consumption, and costs of ride-hailing electric vehicle fleets. Average daily travel distance and travel time for ride-hailing drivers was determined to be 129.4 km and 5.7 h; these values are substantially larger than those for household drivers (40.0 km and 1.5 h). Assuming slow level-1 (1.8 KW) or moderate level-2 (7.2 KW) charging is available at all home parking locations, battery electric vehicles with 200 km all electric range (BEV200) could be used by up to 47% or 78% of ride-hailing drivers and electrify up to 20% or 55% of total distance driven by the ride-hailing fleet. With level-2 charging available at home, work, and public parking, the acceptance ceiling increases to up to 91% of drivers and 80% of distance. Our study suggests that long range BEVs and widespread level-2 charging infrastructure are needed for large-scale electrification of ride-hailing mobility in Beijing. The marginal benefits of increased all electric range, effects on charging infrastructure distribution, and payback times are also presented and discussed. Given the observed heterogeneity of ride-hailing vehicle travel, our study outlines the importance of individual-level analysis to understand the electrification potential and future benefits of electric vehicles in the era of shared smart transportation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu