- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 14. Life underwater
- DE
- National Research Council
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 14. Life underwater
- DE
- National Research Council
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Michele Manca; Francesco Malara; Christof Hübner; Giuseppe Gigli; Maurizio Lanza; Elpida Piperopoulos;doi: 10.1039/c2ee21569a
A novel free-standing and flexible counter electrode for dye solar cells has been developed by conveniently transferring a vertically aligned carbon nanotube forest onto an oxygen-plasma-treated flexible, free-standing and conductive nanocomposite foil. Vertically aligned carbon nanotubes were first grown onto an aluminium foil by chemical vapour deposition and then transferred to the nanocomposite surface by hot pressing. The most meaningful electrochemical parameters have been quantitatively analyzed by means of electrochemical impedance spectroscopy and cyclic voltammetry in order to elucidate how the implementation of the anisotropic carbon nanotube top layer impacts the ultimate catalytic performances of the plate. Such an engineered counter electrode is able to guarantee a fast and effective reduction of the iodide-based electrolyte as well as to provide a solar conversion efficiency that is comparable with a typical Pt/TCO-coated rigid counter electrode. A photocurrent density higher than 13.36 mA cm−2 along with a solar conversion efficiency of 7.26% have been reported for the dye solar cell mounting a counter-electrode based on vertically aligned carbon nanotubes implanted onto a conductive nanocomposite plate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21569a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21569a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Ephraim Gukelberger; Bartolo Gabriele; Jan Hoinkis; Alberto Figoli;Rapid population growth invokes the need for a vast amount of water conservation. Many centralized water treatment systems will reach their limits and face difficulties to provide clean industrial water to rural areas. The infrastructure for water distribution is dilapidated in many regions and only little of the wastewater is currently being recycled. One solution could be the expansion of decentralized membrane bioreactor (MBR) systems in peri-urban areas. MBR achieves excellent water qualities, whereas the comparatively high energy consumption is the main drawback. Therefore, MBR plants need to be optimized in their specific energy consumption to obtain a high degree of self-sufficiency for decentralized locations. There is a dire need for innovative controlling strategies and efficient coupling with energy supply systems through novel applications. This chapter will highlight the basic approaches to reduce the MBR's overall energy consumption and ways to establish sustainable, autonomous operations without sacrificing the process quality.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:The Royal Society Andreas Oschlies; Olaf Duteil; Julia Getzlaff; Wolfgang Koeve; Angela Landolfi; Sunke Schmidtko;Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | COCONET, EC | HERMIONEEC| COCONET ,EC| HERMIONELydia Beuck; Marco Taviani; Antonietta Rosso; André Freiwald; Agostina Vertino; Rossana Sanfilippo;We document a remarkable abundance of the tubeworm Serpula vermicularis Linnaeus, 1767, in bathyal coral habitats from the Bari Canyon System in the southern Adriatic Sea. Here, the specimens of S. vermicularis grow from muddy substrate either as isolated individuals or as localized clusters of multiple individuals. Peculiar tube aggregations are also associated with Madrepora oculata build-ups and other stony corals including Desmophyllum dianthus. Three types of coral-serpulid (C–S) frameworks have been recognized based upon size and shape. The abundance of S. vermicularis increases with the size of C–S frameworks, which results from superimposition, overgrowth, and/or intergrowth of scleractinians and serpulids. Several generations of S. vermicularis contribute to the C–S frameworks, each most probably accounting for more than 8 years and presumably existing in the area for the last hundreds of years. At a meso-scale, the distribution pattern of serpulids seems to be mainly governed by currents and siltation. A further constraint is the co-occurring solitary coral D. dianthus within frameworks. The successful sea-bottom colonization by S. vermicularis and associated C–S frameworks is possibly related to a high oxygen content and food supply derived from the North Adriatic Dense Water (NAdDW). The flourishing populations of S. vermicularis as well as the peculiarity of C–S frameworks suggest that deep-sea canyons provide important benthic habitats in bathyal environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10347-012-0356-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10347-012-0356-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Royal Society of Chemistry (RSC) Michele Manca; Francesco Malara; Christof Hübner; Giuseppe Gigli; Maurizio Lanza; Elpida Piperopoulos;doi: 10.1039/c2ee21569a
A novel free-standing and flexible counter electrode for dye solar cells has been developed by conveniently transferring a vertically aligned carbon nanotube forest onto an oxygen-plasma-treated flexible, free-standing and conductive nanocomposite foil. Vertically aligned carbon nanotubes were first grown onto an aluminium foil by chemical vapour deposition and then transferred to the nanocomposite surface by hot pressing. The most meaningful electrochemical parameters have been quantitatively analyzed by means of electrochemical impedance spectroscopy and cyclic voltammetry in order to elucidate how the implementation of the anisotropic carbon nanotube top layer impacts the ultimate catalytic performances of the plate. Such an engineered counter electrode is able to guarantee a fast and effective reduction of the iodide-based electrolyte as well as to provide a solar conversion efficiency that is comparable with a typical Pt/TCO-coated rigid counter electrode. A photocurrent density higher than 13.36 mA cm−2 along with a solar conversion efficiency of 7.26% have been reported for the dye solar cell mounting a counter-electrode based on vertically aligned carbon nanotubes implanted onto a conductive nanocomposite plate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21569a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee21569a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Matthew Gidden; Malte Meinshausen; Malte Meinshausen; Keywan Riahi; Keywan Riahi; Daniel Huppmann; Leon Clarke; Joeri Rogelj; Joeri Rogelj; Joeri Rogelj; Zebedee Nicholls; Volker Krey; Volker Krey;pmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 ItalyPublisher:Elsevier BV Authors: Ephraim Gukelberger; Bartolo Gabriele; Jan Hoinkis; Alberto Figoli;Rapid population growth invokes the need for a vast amount of water conservation. Many centralized water treatment systems will reach their limits and face difficulties to provide clean industrial water to rural areas. The infrastructure for water distribution is dilapidated in many regions and only little of the wastewater is currently being recycled. One solution could be the expansion of decentralized membrane bioreactor (MBR) systems in peri-urban areas. MBR achieves excellent water qualities, whereas the comparatively high energy consumption is the main drawback. Therefore, MBR plants need to be optimized in their specific energy consumption to obtain a high degree of self-sufficiency for decentralized locations. There is a dire need for innovative controlling strategies and efficient coupling with energy supply systems through novel applications. This chapter will highlight the basic approaches to reduce the MBR's overall energy consumption and ways to establish sustainable, autonomous operations without sacrificing the process quality.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813545-7.00014-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:The Royal Society Andreas Oschlies; Olaf Duteil; Julia Getzlaff; Wolfgang Koeve; Angela Landolfi; Sunke Schmidtko;Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | COCONET, EC | HERMIONEEC| COCONET ,EC| HERMIONELydia Beuck; Marco Taviani; Antonietta Rosso; André Freiwald; Agostina Vertino; Rossana Sanfilippo;We document a remarkable abundance of the tubeworm Serpula vermicularis Linnaeus, 1767, in bathyal coral habitats from the Bari Canyon System in the southern Adriatic Sea. Here, the specimens of S. vermicularis grow from muddy substrate either as isolated individuals or as localized clusters of multiple individuals. Peculiar tube aggregations are also associated with Madrepora oculata build-ups and other stony corals including Desmophyllum dianthus. Three types of coral-serpulid (C–S) frameworks have been recognized based upon size and shape. The abundance of S. vermicularis increases with the size of C–S frameworks, which results from superimposition, overgrowth, and/or intergrowth of scleractinians and serpulids. Several generations of S. vermicularis contribute to the C–S frameworks, each most probably accounting for more than 8 years and presumably existing in the area for the last hundreds of years. At a meso-scale, the distribution pattern of serpulids seems to be mainly governed by currents and siltation. A further constraint is the co-occurring solitary coral D. dianthus within frameworks. The successful sea-bottom colonization by S. vermicularis and associated C–S frameworks is possibly related to a high oxygen content and food supply derived from the North Adriatic Dense Water (NAdDW). The flourishing populations of S. vermicularis as well as the peculiarity of C–S frameworks suggest that deep-sea canyons provide important benthic habitats in bathyal environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10347-012-0356-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10347-012-0356-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu