- home
- Search
- Energy Research
- 14. Life underwater
- DE
- Hyper Article en Ligne
- Energy Research
- 14. Life underwater
- DE
- Hyper Article en Ligne
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 France, Spain, France, United Kingdom, United Kingdom, Germany, Spain, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | BIGSEA, EC | BIOWEB, ARC | Discovery Projects - Gran... +2 projectsEC| BIGSEA ,EC| BIOWEB ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| CERES ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 568 citations 568 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Oxford University Press (OUP) Carmelo Fruciano; Dominik Schmidt; Marcia Maria Ramírez Sanchez; Witold Morek; Zamira Avila Valle; Igor Talijančić; Carlo Pecoraro; Agnès Schermann Legionnet;Abstract In geometric morphometrics, the extent of variation attributable to non-biological causes (i.e. measurement error) is sometimes overlooked. The effects of this variation on downstream statistical analyses are also largely unknown. In particular, it is unclear whether specimen preservation induces substantial variation in shape and whether such variation affects downstream statistical inference. Using a combination of empirical fish body shape data and realistic simulations, we show that preservation introduces substantial artefactual variation and significant non-random error (i.e. bias). Most changes in shape occur when fresh fish are frozen and thawed, whereas a smaller change in shape is observed when frozen and thawed fish are fixed in formalin and transferred to ethanol. Surprisingly, we also show that, in our case, preservation produces only minor effects on three downstream analyses of shape variation: classification using canonical variate analysis, permutation tests of differences in means and computations of differences in mean shape between groups. Even mixing of differently preserved specimens has a relatively small effect on downstream analyses. However, we suggest that mixing fish with different preservation should still be avoided and discuss the conditions in which this practice might be justified.
Zoological Journal o... arrow_drop_down Zoological Journal of the Linnean SocietyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/zoolinnean/zlz069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoological Journal o... arrow_drop_down Zoological Journal of the Linnean SocietyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/zoolinnean/zlz069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Authors: Ibelings, Bastiaan W.; Bormans, Myriam; Fastner, Jutta; Visser, Petra M.;Nuisance, toxic cyanobacterial blooms are a persistent and globally expanding problem. Prevention of blooms requires that external and internal sources of nutrients are managed to levels where development of cyanobacterial blooms is restricted. Control of blooms, in which their presence is reduced to a level where they no longer pose a risk through additional measures such as biomanipulation or artificial mixing, demands that three elements come together: (1) understanding of the key ecological traits of the dominant cyanobacteria taxa, (2) system analysis of the lake, in particular its morphometry, water and nutrient balance, (3) adequate design and execution of the management methods of choice. All three elements are important for choosing effective management interventions and predicting their outcome. Mitigation of blooms reduces the risks and harmful effects of blooms if they cannot be prevented or sufficiently controlled, methods such as harvesting of surface scums or application of cyanocides may be used in those cases where water quality improvement is urgent. Ultimately, managing cyanobacterial blooms is most effective in the context of developing a Water Safety Plan. This is a risk assessment and management approach developed by the World Health Organization and provides a platform for bringing together the stakeholders who have a say about activities in the catchment causing eutrophication. Together, they can develop and implement control measures in the chain from catchment to drinking-water offtake which effectively mitigate eutrophication and thus protect humans and the lake ecosystem services they rely on from effects of toxic cyanobacteria.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10452-016-9596-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10452-016-9596-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2010Embargo end date: 01 Jan 2010 FrancePublisher:Elsevier BV Authors: Ryabov, Alexei B.; Rudolf, Lars; Blasius, Bernd;The vertical distribution of phytoplankton is of fundamental importance for the dynamics and structure of aquatic communities. Here, using an advection-reaction-diffusion model, we investigate the distribution and competition of phytoplankton species in a water column, in which inverse resource gradients of light and a nutrient can limit growth of the biomass. This problem poses a challenge for ecologists, as the location of a production layer is not fixed, but rather depends on many internal parameters and environmental factors. In particular, we study the influence of an upper mixed layer (UML) in this system and show that it leads to a variety of dynamic effects: (i) Our model predicts alternative density profiles with a maximum of biomass either within or below the UML, thereby the system may be bistable or the relaxation from an unstable state may require a long-lasting transition. (ii) Reduced mixing in the deep layer can induce oscillations of the biomass; we show that a UML can sustain these oscillations even if the diffusivity is less than the critical mixing for a sinking phytoplankton population. (iii) A UML can strongly modify the outcome of competition between different phytoplankton species, yielding bistability both in the spatial distribution and in the species composition. (iv) A light limited species can obtain a competitive advantage if the diffusivity in the deep layers is reduced below a critical value. This yields a subtle competitive exclusion effect, where the oscillatory states in the deep layers are displaced by steady solutions in the UML. Finally, we present a novel graphical approach for deducing the competition outcome and for the analysis of the role of a UML in aquatic systems. 20 pages, 8 figures
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverJournal of Theoretical BiologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2009.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverJournal of Theoretical BiologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2009.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | HYDRALAB-PLUSEC| HYDRALAB-PLUSAuthors: Baynes, Edwin R.C.; van de Lageweg, Wietse I.; McLelland, Stuart J.; Parsons, Daniel R.; +6 AuthorsBaynes, Edwin R.C.; van de Lageweg, Wietse I.; McLelland, Stuart J.; Parsons, Daniel R.; Aberle, Jochen; Dijkstra, Jasper; Henry, Pierre-Yves; Rice, Stephen P.; Thom, Moritz; Moulin, Frederic;The interactions between water, sediment and biology in fluvial systems are complex and driven by multiple forcing mechanisms across a range of spatial and temporal scales. In a changing climate, some meteorological drivers are expected to become more extreme with, for example, more prolonged droughts or more frequent flooding. Such environmental changes will potentially have significant consequences for the human populations and ecosystems that are dependent on riverscapes, but our understanding of fluvial system response to external drivers remains incomplete. As a consequence, many of the predictions of the effects of climate change have a large uncertainty that hampers effective management of fluvial environments. Amongst the array of methodological approaches available to scientists and engineers charged with improving that understanding, is physical modelling. Here, we review the role of physical modelling for understanding both biotic and abiotic processes and their interactions in fluvial systems. The approaches currently employed for scaling and representing fluvial processes in physical models are explored, from 1:1 experiments that reproduce processes at real-time or time scales of 10−1-100 years, to analogue models that compress spatial scales to simulate processes over time scales exceeding 102–103 years. An important gap in existing capabilities identified in this study is the representation of fluvial systems over time scales relevant for managing the immediate impacts of global climatic change; 101 – 102 years, the representation of variable forcing (e.g. storms), and the representation of biological processes. Research to fill this knowledge gap is proposed, including examples of how the time scale of study in directly scaled models could be extended and the time scale of landscape models could be compressed in the future, through the use of lightweight sediments, and innovative approaches for representing vegetation and biostabilisation in fluvial environments at condensed time scales, such as small-scale vegetation, plastic plants and polymers. It is argued that by improving physical modelling capabilities and coupling physical and numerical models, it should be possible to improve understanding of the complex interactions and processes induced by variable forcing within fluvial systems over a broader range of time scales. This will enable policymakers and environmental managers to help reduce and mitigate the risks associated with the impacts of climate change in rivers.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2018.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 210 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2018.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 France, Spain, France, United Kingdom, United Kingdom, Germany, Spain, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | BIGSEA, EC | BIOWEB, ARC | Discovery Projects - Gran... +2 projectsEC| BIGSEA ,EC| BIOWEB ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| CERES ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 568 citations 568 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Oxford University Press (OUP) Carmelo Fruciano; Dominik Schmidt; Marcia Maria Ramírez Sanchez; Witold Morek; Zamira Avila Valle; Igor Talijančić; Carlo Pecoraro; Agnès Schermann Legionnet;Abstract In geometric morphometrics, the extent of variation attributable to non-biological causes (i.e. measurement error) is sometimes overlooked. The effects of this variation on downstream statistical analyses are also largely unknown. In particular, it is unclear whether specimen preservation induces substantial variation in shape and whether such variation affects downstream statistical inference. Using a combination of empirical fish body shape data and realistic simulations, we show that preservation introduces substantial artefactual variation and significant non-random error (i.e. bias). Most changes in shape occur when fresh fish are frozen and thawed, whereas a smaller change in shape is observed when frozen and thawed fish are fixed in formalin and transferred to ethanol. Surprisingly, we also show that, in our case, preservation produces only minor effects on three downstream analyses of shape variation: classification using canonical variate analysis, permutation tests of differences in means and computations of differences in mean shape between groups. Even mixing of differently preserved specimens has a relatively small effect on downstream analyses. However, we suggest that mixing fish with different preservation should still be avoided and discuss the conditions in which this practice might be justified.
Zoological Journal o... arrow_drop_down Zoological Journal of the Linnean SocietyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/zoolinnean/zlz069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoological Journal o... arrow_drop_down Zoological Journal of the Linnean SocietyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/zoolinnean/zlz069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Authors: Ibelings, Bastiaan W.; Bormans, Myriam; Fastner, Jutta; Visser, Petra M.;Nuisance, toxic cyanobacterial blooms are a persistent and globally expanding problem. Prevention of blooms requires that external and internal sources of nutrients are managed to levels where development of cyanobacterial blooms is restricted. Control of blooms, in which their presence is reduced to a level where they no longer pose a risk through additional measures such as biomanipulation or artificial mixing, demands that three elements come together: (1) understanding of the key ecological traits of the dominant cyanobacteria taxa, (2) system analysis of the lake, in particular its morphometry, water and nutrient balance, (3) adequate design and execution of the management methods of choice. All three elements are important for choosing effective management interventions and predicting their outcome. Mitigation of blooms reduces the risks and harmful effects of blooms if they cannot be prevented or sufficiently controlled, methods such as harvesting of surface scums or application of cyanocides may be used in those cases where water quality improvement is urgent. Ultimately, managing cyanobacterial blooms is most effective in the context of developing a Water Safety Plan. This is a risk assessment and management approach developed by the World Health Organization and provides a platform for bringing together the stakeholders who have a say about activities in the catchment causing eutrophication. Together, they can develop and implement control measures in the chain from catchment to drinking-water offtake which effectively mitigate eutrophication and thus protect humans and the lake ecosystem services they rely on from effects of toxic cyanobacteria.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10452-016-9596-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10452-016-9596-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2010Embargo end date: 01 Jan 2010 FrancePublisher:Elsevier BV Authors: Ryabov, Alexei B.; Rudolf, Lars; Blasius, Bernd;The vertical distribution of phytoplankton is of fundamental importance for the dynamics and structure of aquatic communities. Here, using an advection-reaction-diffusion model, we investigate the distribution and competition of phytoplankton species in a water column, in which inverse resource gradients of light and a nutrient can limit growth of the biomass. This problem poses a challenge for ecologists, as the location of a production layer is not fixed, but rather depends on many internal parameters and environmental factors. In particular, we study the influence of an upper mixed layer (UML) in this system and show that it leads to a variety of dynamic effects: (i) Our model predicts alternative density profiles with a maximum of biomass either within or below the UML, thereby the system may be bistable or the relaxation from an unstable state may require a long-lasting transition. (ii) Reduced mixing in the deep layer can induce oscillations of the biomass; we show that a UML can sustain these oscillations even if the diffusivity is less than the critical mixing for a sinking phytoplankton population. (iii) A UML can strongly modify the outcome of competition between different phytoplankton species, yielding bistability both in the spatial distribution and in the species composition. (iv) A light limited species can obtain a competitive advantage if the diffusivity in the deep layers is reduced below a critical value. This yields a subtle competitive exclusion effect, where the oscillatory states in the deep layers are displaced by steady solutions in the UML. Finally, we present a novel graphical approach for deducing the competition outcome and for the analysis of the role of a UML in aquatic systems. 20 pages, 8 figures
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverJournal of Theoretical BiologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2009.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverJournal of Theoretical BiologyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2009.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | HYDRALAB-PLUSEC| HYDRALAB-PLUSAuthors: Baynes, Edwin R.C.; van de Lageweg, Wietse I.; McLelland, Stuart J.; Parsons, Daniel R.; +6 AuthorsBaynes, Edwin R.C.; van de Lageweg, Wietse I.; McLelland, Stuart J.; Parsons, Daniel R.; Aberle, Jochen; Dijkstra, Jasper; Henry, Pierre-Yves; Rice, Stephen P.; Thom, Moritz; Moulin, Frederic;The interactions between water, sediment and biology in fluvial systems are complex and driven by multiple forcing mechanisms across a range of spatial and temporal scales. In a changing climate, some meteorological drivers are expected to become more extreme with, for example, more prolonged droughts or more frequent flooding. Such environmental changes will potentially have significant consequences for the human populations and ecosystems that are dependent on riverscapes, but our understanding of fluvial system response to external drivers remains incomplete. As a consequence, many of the predictions of the effects of climate change have a large uncertainty that hampers effective management of fluvial environments. Amongst the array of methodological approaches available to scientists and engineers charged with improving that understanding, is physical modelling. Here, we review the role of physical modelling for understanding both biotic and abiotic processes and their interactions in fluvial systems. The approaches currently employed for scaling and representing fluvial processes in physical models are explored, from 1:1 experiments that reproduce processes at real-time or time scales of 10−1-100 years, to analogue models that compress spatial scales to simulate processes over time scales exceeding 102–103 years. An important gap in existing capabilities identified in this study is the representation of fluvial systems over time scales relevant for managing the immediate impacts of global climatic change; 101 – 102 years, the representation of variable forcing (e.g. storms), and the representation of biological processes. Research to fill this knowledge gap is proposed, including examples of how the time scale of study in directly scaled models could be extended and the time scale of landscape models could be compressed in the future, through the use of lightweight sediments, and innovative approaches for representing vegetation and biostabilisation in fluvial environments at condensed time scales, such as small-scale vegetation, plastic plants and polymers. It is argued that by improving physical modelling capabilities and coupling physical and numerical models, it should be possible to improve understanding of the complex interactions and processes induced by variable forcing within fluvial systems over a broader range of time scales. This will enable policymakers and environmental managers to help reduce and mitigate the risks associated with the impacts of climate change in rivers.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2018.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 210 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://insu.hal.science/insu-01785426Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.earscirev.2018.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu