- home
- Search
- Energy Research
- Research Council of Finland
- 2. Zero hunger
- DK
- Energy Research
- Research Council of Finland
- 2. Zero hunger
- DK
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Canada, DenmarkPublisher:Wiley Funded by:AKA | Macrodetritivore range sh...AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsMaja K. Sundqvist; Maja K. Sundqvist; Karin A. Nilsson; Paul J. CaraDonna; Daniel B. Metcalfe; Sally A. Keith; Sally A. Keith; Aimée T. Classen; Aimée T. Classen; Erin K. Cameron; Erin K. Cameron; Erik Askov Mousing;doi: 10.1002/ecs2.2645
AbstractTrophic interactions within food webs affect species distributions, coexistence, and provision of ecosystem services but can be strongly impacted by climatic changes. Understanding these impacts is therefore essential for managing ecosystems and sustaining human well‐being. Here, we conducted a global synthesis of terrestrial, marine, and freshwater studies to identify key gaps in our knowledge of climate change impacts on food webs and determine whether the areas currently studied are those most likely to be impacted by climate change. We found research suffers from a strong geographic bias, with only 3.5% of studies occurring in the tropics. Importantly, the distribution of sites sampled under projected climate changes was biased—areas with decreases or large increases in precipitation and areas with low magnitudes of temperature change were under‐represented. Our results suggest that understanding of climate change impacts on food webs could be broadened by considering more than two trophic levels, responses in addition to species abundance and biomass, impacts of a wider suite of climatic variables, and tropical ecosystems. Most importantly, to enable better forecasts of biodiversity responses to climate change, we identify critically under‐represented geographic regions and climatic conditions which should be prioritized in future research.
Saint Mary's Univers... arrow_drop_down Saint Mary's University, Halifax: Institutional RepositoryArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ecs2.2645Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Saint Mary's Univers... arrow_drop_down Saint Mary's University, Halifax: Institutional RepositoryArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ecs2.2645Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Public Library of Science (PLoS) Funded by:AKA | Soil microbial communitie...AKA| Soil microbial communities and nutrient dynamics under climatic warming in the ArcticAuthors: Erland Bååth; Riikka Rinnan; Riikka Rinnan; Anders Michelsen;If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.
PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0056532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0056532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Finland, Netherlands, SpainPublisher:Oxford University Press (OUP) Funded by:, DFG | Catchments as Reactors: M..., AKA | Diversifying cropping sys...[no funder available] ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA)Dueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N.L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W.M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre, Pierre; Rebetzke, Greg;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Journal of Experimen... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 56 Powered bymore_vert Journal of Experimen... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 09 Oct 2024 Germany, Netherlands, United Kingdom, Australia, United Kingdom, France, Spain, France, Finland, Australia, France, United Kingdom, SwedenPublisher:Springer Science and Business Media LLC Funded by:FWF | Litter decomposition and ..., NSF | Predicting Regional Invas..., EC | BIOBIO +15 projectsFWF| Litter decomposition and humus formation in highalpine soils ,NSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,RSF| The accumulation of carbon in forest soils and forest succession status ,EC| SPECIALS ,NSERC ,EC| Gradual_Change ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,EC| ROUTES ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Soil ecology in the 21st century _ a crucial role in land management ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate change ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsArmand W. Koné; Muhammad Rashid; Davorka K. Hackenberger; Basil V. Iannone; Salvador Rebollo; Olga Ferlian; Loes van Schaik; Andrew R. Holdsworth; José Antonio Talavera; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Dilmar Baretta; Anahí Domínguez; Radoslava Kanianska; Christian Ammer; Timothy R. Cavagnaro; Darío J. Díaz Cosín; Christian Mulder; Gerardo Moreno; Jasmine M. Crumsey; Irina B. Rapoport; Iurii M. Lebedev; Iurii M. Lebedev; Iurii M. Lebedev; Guillaume Xavier Rousseau; Carlos A. Guerra; Raphaël Marichal; Takuo Hishi; Jörg Prietzel; Irina V. Zenkova; José Camilo Bedano; Annise Dobson; Volkmar Wolters; Sheila Uribe-López; Adrian A. Wackett; Jiro Tsukamoto; Visa Nuutinen; Michael J. Gundale; Steven J. Fonte; Yvan Capowiez; Bart Muys; Miguel Á. Rodríguez; Emily R. Webster; Nico Eisenhauer; Anja Coors; Noa Kekuewa Lincoln; Dolores Trigo; Amy Choi; David J. Russell; Nathaniel H. Wehr; Victoria Nuzzo; André L.C. Franco; Liliana B. Falco; Kristine N. Hopfensperger; Matthew W. Warren; Miwa Arai; Matthias C. Rillig; Fredrick O. Ayuke; Hasegawa Motohiro; Iñigo Virto; Grizelle González; Thibaud Decaëns; Shaieste Gholami; Ulrich Irmler; Martin Holmstrup; Carlos Fragoso; H. Lalthanzara; Michael Steinwandter; Maria Kernecker; Luis M. Hernández; Branimir K. Hackenberger; Bernd Blossey; Weixin Zhang; Robin Beauséjour; Jérôme Mathieu; Jérôme Mathieu; Yukio Minamiya; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Jeff R. Hirth; Anna Rożen; Wim H. van der Putten; Scott R. Loss; Pengfei Wu; Daniel Cluzeau; Konstantin B. Gongalsky; Konstantin B. Gongalsky; David A. Wardle; Olaf Schmidt; Radim Matula; Rémy Beugnon; Sabine Ammer; Elizabeth M. Bach; Lorenzo Pérez-Camacho; Robert L. Bradley; Juan B. Jesús; Dietmar Barkusky; Mari Ivask; Aidan M. Keith; Geoff H. Baker; George G. Brown; Anna P. Geraskina; Franciska T. de Vries; Joann K. Whalen; Michael B. Wironen; Diana H. Wall; Monika Joschko; Benjamin Schwarz; Sandy M. Smith; Andrea Dávalos; Danilo López-Hernández; Shishir Paudel; James C. Burtis; Edith Le Cadre; Abegail T Fusilero; Abegail T Fusilero; Lindsey Norgrove; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Joanne M. Bennett; Joanne M. Bennett; Nobuhiro Kaneko; Felicity Crotty; Felicity Crotty; Rosa Fernández; Sanna T. Kukkonen; Jan Hendrik Moos; Julia Krebs; Klaus Birkhofer; Johan Pansu; Johan Pansu; Michael Schirrmann; Christoph Emmerling; Alberto Orgiazzi; Bryant C. Scharenbroch; Bryant C. Scharenbroch; Ulrich Brose; Yahya Kooch; Helen Phillips; Helen Phillips; Marie Luise Carolina Bartz; Marie Luise Carolina Bartz; Daniel R. Lammel; P. Mujeeb Rahman; Mónica Gutiérrez López; Julia Seeber; Marta Novo; Julia Clause; Jaswinder Singh; Jodi L. Johnson-Maynard; Madhav P. Thakur; Birgitta König-Ries; Guénola Pérès; Guénola Pérès; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Alexander M. Roth; Katalin Szlavecz; Patrick Lavelle; Boris Schröder; Johan Neirynck; Michel Brossard; Michel Loreau; Erin K. Cameron; Erin K. Cameron; Esperanza Huerta Lwanga; Veikko Huhta; Jean-François Ponge; Kelly S. Ramirez;AbstractEarthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, Finland, Denmark, France, Germany, Spain, United Kingdom, France, United KingdomPublisher:Wiley Funded by:AKA | Pathways for linking unce..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS)Authors: Ann-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; +63 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; Curtis D. Jones; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Bruno Basso; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Garry O'Leary; Andrea Maiorano; Andrea Maiorano; Heidi Webber; Mónica Espadafor; Davide Cammarano; Fulu Tao; Zhao Zhang; Mikhail A. Semenov; Pierre Martre; Taru Palosuo; Daniel Wallach; Marijn van der Velde; Liujun Xiao; Liujun Xiao; Thilo Streck; Juraj Balkovic; Juraj Balkovic; Roberto C. Izaurralde; Roberto C. Izaurralde; Katharina Waha; Bing Liu; Joost Wolf; Claas Nendel; Iwan Supit; Christoph Müller; Alex C. Ruane; Roberto Ferrise; Senthold Asseng; Gerrit Hoogenboom; Frank Ewert; Christian Biernath; Soora Naresh Kumar; Giacomo De Sanctis; Marco Bindi; Zhigan Zhao; Zhigan Zhao; Kurt Christian Kersebaum; Dominique Ripoche; Eckart Priesack; John R. Porter; John R. Porter; John R. Porter; Heidi Horan; Belay T. Kassie; Enli Wang; Pramod K. Aggarwal; Christian Klein; Yujing Gao; Benjamin Dumont; Manuel Montesino San Martin; Yan Zhu; Sara Minoli; Claudio O. Stöckle; Mukhtar Ahmed; Mukhtar Ahmed;AbstractEfforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 616 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 12 Oct 2018 Italy, Australia, Germany, Switzerland, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:AKA | Pathways linking uncertai...AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMESWebber H.; Webber H.; Ewert F.; Ewert F.; Olesen J.E.; Müller C.; Fronzek S.; Ruane A.C.; Bourgault M.; Martre P.; Ababaei B.; Ababaei B.; Ababaei B.; Bindi M.; Ferrise R.; Finger R.; Fodor N.; Gabaldón-Leal C.; Gaiser T.; Jabloun M.; Kersebaum K.C.; Lizaso J.I.; Lorite I.J.; Manceau L.; Moriondo M.; Nendel C.; Rodríguez A.; Rodríguez A.; Ruiz-Ramos M.; Semenov M.A.; Siebert S.; Stella T.; Stratonovitch P.; Trombi G.; Wallach D.;AbstractUnderstanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 259 citations 259 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, Netherlands, Germany, Italy, Italy, Finland, SpainPublisher:Inter-Research Science Center Funded by:AKA | Pathways linking uncertai..., EC | IMPRESSIONS, AKA | Pathways for linking unce... +2 projectsAKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTE ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTEAlessia Perego; Marco Acutis; Holger Hoffmann; Miroslav Trnka; Piotr Baranowski; Cezary Sławiński; Christoph Müller; Lianhai Wu; Bruno Basso; Mattia Sanna; Claas Nendel; Louis François; Pierre Stratonovitch; Kurt Christian Kersebaum; Alfredo Rodríguez; Zhigan Zhao; Zhigan Zhao; Per Bodin; Reimund P. Rötter; Marco Bindi; Davide Cammarano; Marie-France Destain; Mikhail A. Semenov; Taru Palosuo; Katharina Waha; Katharina Waha; Samuel Buis; Julien Minet; Enli Wang; Senthold Asseng; Frank Ewert; Chris Kollas; Margarita Ruiz-Ramos; Françoise Ruget; Ingrid Jacquemin; Petr Hlavinka; M. I. Mínguez; Ignacio J. Lorite; Thomas Gaiser; Paola A. Deligios; Jaromir Krzyszczak; Nina Pirttioja; Marco Moriondo; Benjamin Dumont; Stefan Fronzek; Manuel Montesino; Fulu Tao; Iwan Supit; Roberto Ferrise; Isik Öztürk; Timothy R. Carter; Alex C. Ruane; Alex C. Ruane;doi: 10.3354/cr01322
handle: 2434/349558
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Canada, DenmarkPublisher:Wiley Funded by:AKA | Macrodetritivore range sh...AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsMaja K. Sundqvist; Maja K. Sundqvist; Karin A. Nilsson; Paul J. CaraDonna; Daniel B. Metcalfe; Sally A. Keith; Sally A. Keith; Aimée T. Classen; Aimée T. Classen; Erin K. Cameron; Erin K. Cameron; Erik Askov Mousing;doi: 10.1002/ecs2.2645
AbstractTrophic interactions within food webs affect species distributions, coexistence, and provision of ecosystem services but can be strongly impacted by climatic changes. Understanding these impacts is therefore essential for managing ecosystems and sustaining human well‐being. Here, we conducted a global synthesis of terrestrial, marine, and freshwater studies to identify key gaps in our knowledge of climate change impacts on food webs and determine whether the areas currently studied are those most likely to be impacted by climate change. We found research suffers from a strong geographic bias, with only 3.5% of studies occurring in the tropics. Importantly, the distribution of sites sampled under projected climate changes was biased—areas with decreases or large increases in precipitation and areas with low magnitudes of temperature change were under‐represented. Our results suggest that understanding of climate change impacts on food webs could be broadened by considering more than two trophic levels, responses in addition to species abundance and biomass, impacts of a wider suite of climatic variables, and tropical ecosystems. Most importantly, to enable better forecasts of biodiversity responses to climate change, we identify critically under‐represented geographic regions and climatic conditions which should be prioritized in future research.
Saint Mary's Univers... arrow_drop_down Saint Mary's University, Halifax: Institutional RepositoryArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ecs2.2645Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Saint Mary's Univers... arrow_drop_down Saint Mary's University, Halifax: Institutional RepositoryArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ecs2.2645Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Public Library of Science (PLoS) Funded by:AKA | Soil microbial communitie...AKA| Soil microbial communities and nutrient dynamics under climatic warming in the ArcticAuthors: Erland Bååth; Riikka Rinnan; Riikka Rinnan; Anders Michelsen;If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.
PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0056532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0056532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Finland, Netherlands, SpainPublisher:Oxford University Press (OUP) Funded by:, DFG | Catchments as Reactors: M..., AKA | Diversifying cropping sys...[no funder available] ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA)Dueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N.L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W.M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre, Pierre; Rebetzke, Greg;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Journal of Experimen... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 56 Powered bymore_vert Journal of Experimen... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 09 Oct 2024 Germany, Netherlands, United Kingdom, Australia, United Kingdom, France, Spain, France, Finland, Australia, France, United Kingdom, SwedenPublisher:Springer Science and Business Media LLC Funded by:FWF | Litter decomposition and ..., NSF | Predicting Regional Invas..., EC | BIOBIO +15 projectsFWF| Litter decomposition and humus formation in highalpine soils ,NSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,RSF| The accumulation of carbon in forest soils and forest succession status ,EC| SPECIALS ,NSERC ,EC| Gradual_Change ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,EC| ROUTES ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Soil ecology in the 21st century _ a crucial role in land management ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate change ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsArmand W. Koné; Muhammad Rashid; Davorka K. Hackenberger; Basil V. Iannone; Salvador Rebollo; Olga Ferlian; Loes van Schaik; Andrew R. Holdsworth; José Antonio Talavera; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Dilmar Baretta; Anahí Domínguez; Radoslava Kanianska; Christian Ammer; Timothy R. Cavagnaro; Darío J. Díaz Cosín; Christian Mulder; Gerardo Moreno; Jasmine M. Crumsey; Irina B. Rapoport; Iurii M. Lebedev; Iurii M. Lebedev; Iurii M. Lebedev; Guillaume Xavier Rousseau; Carlos A. Guerra; Raphaël Marichal; Takuo Hishi; Jörg Prietzel; Irina V. Zenkova; José Camilo Bedano; Annise Dobson; Volkmar Wolters; Sheila Uribe-López; Adrian A. Wackett; Jiro Tsukamoto; Visa Nuutinen; Michael J. Gundale; Steven J. Fonte; Yvan Capowiez; Bart Muys; Miguel Á. Rodríguez; Emily R. Webster; Nico Eisenhauer; Anja Coors; Noa Kekuewa Lincoln; Dolores Trigo; Amy Choi; David J. Russell; Nathaniel H. Wehr; Victoria Nuzzo; André L.C. Franco; Liliana B. Falco; Kristine N. Hopfensperger; Matthew W. Warren; Miwa Arai; Matthias C. Rillig; Fredrick O. Ayuke; Hasegawa Motohiro; Iñigo Virto; Grizelle González; Thibaud Decaëns; Shaieste Gholami; Ulrich Irmler; Martin Holmstrup; Carlos Fragoso; H. Lalthanzara; Michael Steinwandter; Maria Kernecker; Luis M. Hernández; Branimir K. Hackenberger; Bernd Blossey; Weixin Zhang; Robin Beauséjour; Jérôme Mathieu; Jérôme Mathieu; Yukio Minamiya; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Jeff R. Hirth; Anna Rożen; Wim H. van der Putten; Scott R. Loss; Pengfei Wu; Daniel Cluzeau; Konstantin B. Gongalsky; Konstantin B. Gongalsky; David A. Wardle; Olaf Schmidt; Radim Matula; Rémy Beugnon; Sabine Ammer; Elizabeth M. Bach; Lorenzo Pérez-Camacho; Robert L. Bradley; Juan B. Jesús; Dietmar Barkusky; Mari Ivask; Aidan M. Keith; Geoff H. Baker; George G. Brown; Anna P. Geraskina; Franciska T. de Vries; Joann K. Whalen; Michael B. Wironen; Diana H. Wall; Monika Joschko; Benjamin Schwarz; Sandy M. Smith; Andrea Dávalos; Danilo López-Hernández; Shishir Paudel; James C. Burtis; Edith Le Cadre; Abegail T Fusilero; Abegail T Fusilero; Lindsey Norgrove; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Joanne M. Bennett; Joanne M. Bennett; Nobuhiro Kaneko; Felicity Crotty; Felicity Crotty; Rosa Fernández; Sanna T. Kukkonen; Jan Hendrik Moos; Julia Krebs; Klaus Birkhofer; Johan Pansu; Johan Pansu; Michael Schirrmann; Christoph Emmerling; Alberto Orgiazzi; Bryant C. Scharenbroch; Bryant C. Scharenbroch; Ulrich Brose; Yahya Kooch; Helen Phillips; Helen Phillips; Marie Luise Carolina Bartz; Marie Luise Carolina Bartz; Daniel R. Lammel; P. Mujeeb Rahman; Mónica Gutiérrez López; Julia Seeber; Marta Novo; Julia Clause; Jaswinder Singh; Jodi L. Johnson-Maynard; Madhav P. Thakur; Birgitta König-Ries; Guénola Pérès; Guénola Pérès; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Alexander M. Roth; Katalin Szlavecz; Patrick Lavelle; Boris Schröder; Johan Neirynck; Michel Brossard; Michel Loreau; Erin K. Cameron; Erin K. Cameron; Esperanza Huerta Lwanga; Veikko Huhta; Jean-François Ponge; Kelly S. Ramirez;AbstractEarthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, Finland, Denmark, France, Germany, Spain, United Kingdom, France, United KingdomPublisher:Wiley Funded by:AKA | Pathways for linking unce..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS)Authors: Ann-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; +63 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Sebastian Gayler; Margarita Garcia-Vila; Curtis D. Jones; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Bruno Basso; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Garry O'Leary; Andrea Maiorano; Andrea Maiorano; Heidi Webber; Mónica Espadafor; Davide Cammarano; Fulu Tao; Zhao Zhang; Mikhail A. Semenov; Pierre Martre; Taru Palosuo; Daniel Wallach; Marijn van der Velde; Liujun Xiao; Liujun Xiao; Thilo Streck; Juraj Balkovic; Juraj Balkovic; Roberto C. Izaurralde; Roberto C. Izaurralde; Katharina Waha; Bing Liu; Joost Wolf; Claas Nendel; Iwan Supit; Christoph Müller; Alex C. Ruane; Roberto Ferrise; Senthold Asseng; Gerrit Hoogenboom; Frank Ewert; Christian Biernath; Soora Naresh Kumar; Giacomo De Sanctis; Marco Bindi; Zhigan Zhao; Zhigan Zhao; Kurt Christian Kersebaum; Dominique Ripoche; Eckart Priesack; John R. Porter; John R. Porter; John R. Porter; Heidi Horan; Belay T. Kassie; Enli Wang; Pramod K. Aggarwal; Christian Klein; Yujing Gao; Benjamin Dumont; Manuel Montesino San Martin; Yan Zhu; Sara Minoli; Claudio O. Stöckle; Mukhtar Ahmed; Mukhtar Ahmed;AbstractEfforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 616 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/106027Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 12 Oct 2018 Italy, Australia, Germany, Switzerland, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:AKA | Pathways linking uncertai...AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMESWebber H.; Webber H.; Ewert F.; Ewert F.; Olesen J.E.; Müller C.; Fronzek S.; Ruane A.C.; Bourgault M.; Martre P.; Ababaei B.; Ababaei B.; Ababaei B.; Bindi M.; Ferrise R.; Finger R.; Fodor N.; Gabaldón-Leal C.; Gaiser T.; Jabloun M.; Kersebaum K.C.; Lizaso J.I.; Lorite I.J.; Manceau L.; Moriondo M.; Nendel C.; Rodríguez A.; Rodríguez A.; Ruiz-Ramos M.; Semenov M.A.; Siebert S.; Stella T.; Stratonovitch P.; Trombi G.; Wallach D.;AbstractUnderstanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 259 citations 259 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02623843/documentJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1038/s41467-018-06525-2Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06525-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, Netherlands, Germany, Italy, Italy, Finland, SpainPublisher:Inter-Research Science Center Funded by:AKA | Pathways linking uncertai..., EC | IMPRESSIONS, AKA | Pathways for linking unce... +2 projectsAKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTE ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTEAlessia Perego; Marco Acutis; Holger Hoffmann; Miroslav Trnka; Piotr Baranowski; Cezary Sławiński; Christoph Müller; Lianhai Wu; Bruno Basso; Mattia Sanna; Claas Nendel; Louis François; Pierre Stratonovitch; Kurt Christian Kersebaum; Alfredo Rodríguez; Zhigan Zhao; Zhigan Zhao; Per Bodin; Reimund P. Rötter; Marco Bindi; Davide Cammarano; Marie-France Destain; Mikhail A. Semenov; Taru Palosuo; Katharina Waha; Katharina Waha; Samuel Buis; Julien Minet; Enli Wang; Senthold Asseng; Frank Ewert; Chris Kollas; Margarita Ruiz-Ramos; Françoise Ruget; Ingrid Jacquemin; Petr Hlavinka; M. I. Mínguez; Ignacio J. Lorite; Thomas Gaiser; Paola A. Deligios; Jaromir Krzyszczak; Nina Pirttioja; Marco Moriondo; Benjamin Dumont; Stefan Fronzek; Manuel Montesino; Fulu Tao; Iwan Supit; Roberto Ferrise; Isik Öztürk; Timothy R. Carter; Alex C. Ruane; Alex C. Ruane;doi: 10.3354/cr01322
handle: 2434/349558
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu