- home
- Search
- Energy Research
- medical and health sciences
- FR
- Southeast University
- Energy Research
- medical and health sciences
- FR
- Southeast University
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Lin Su; Caroline M Ajo-Franklin;pmid: 30849708
The growing abundance of wind and solar power has driven interest in utilizing this renewable energy to make chemicals. One of the most efficient and sophisticated frameworks to solar-to-chemical conversion is bioelectrochemical systems that electrochemically couple inorganic catalysts and microorganisms. In particular, microbial electrosynthesis systems and biohybrid systems have used CO2 and electricity or light, respectively, to synthesize organic acids at energy efficiencies that exceed natural photosynthesis. In parallel, new methods have been recently developed to improve the poor mechanistic understanding of these and other bioelectrochemical systems. Deeper knowledge of these underlying molecular processes and creation of new architectures for bioelectrochemical systems are needed to make these promising technologies scale to a commercially relevant level.
Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2019.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2019.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Caroline M. Ajo-Franklin; Tom J. Zajdel; Moshe Baruch; Andrew Prior; Lin Su; Lin Su; Tatsuya Fukushima;pmid: 31880923
Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2022 United States, Denmark, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Adapting Socio-ecological..., EC | TOFDRY, NSF | 3rd Collaborative Researc... +1 projectsNSF| Adapting Socio-ecological Systems to Increased Climate Variability ,EC| TOFDRY ,NSF| 3rd Collaborative Research Network Program (CRN3) ,EC| 4CRussell Doughty; Russell Doughty; Martin Brandt; Sean Crowell; Xiaojun Li; Lei Fan; Fang Liu; Stephen Sitch; Philippe Ciais; Xiangming Xiao; Xiaocui Wu; Berrien Moore; Jean-Pierre Wigneron; Yao Zhang; Yuanwei Qin;arXiv: 2206.07363
Spatial-temporal dynamics of aboveground biomass (AGB) and forest area affect the carbon cycle, climate, and biodiversity in the Brazilian Amazon. Here we investigate inter-annual changes of AGB and forest area by analyzing satellite-based annual AGB and forest area datasets. We found the gross forest area loss was larger in 2019 than in 2015, possibly due to recent loosening of forest protection policies. However, net AGB loss was three times smaller in 2019 than in 2015. During 2010-2019, the Brazilian Amazon had a cumulative gross loss of 4.45 Pg C against a gross gain of 3.78 Pg C, resulting in net AGB loss of 0.67 Pg C. Forest degradation (73%) contributed three times more to the gross AGB loss than deforestation (27%), given that the areal extent of degradation exceeds deforestation. This indicates that forest degradation has become the largest process driving carbon loss and should become a higher policy priority.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01026-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01026-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Chen Wang; Xuli Tang; Xiuzhi Chen; Jean-Pierre Wigneron; Wenping Yuan; Xueqin Yang; Shilong Piao; Qing Ye; Liu Liyang; Liu Liyang; Hui Liu; Yongxian Su; Lei Fan; Hui Yang; Jin Wu; Philippe Ciais; Fanxi Gong; Pierre Gentine; Ying-Ping Wang; Fabienne Maignan; Jiali Shang; Bin He;doi: 10.1111/gcb.16017
pmid: 34854168
AbstractOur limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time‐series records of remotely sensed Ku‐band vegetation optical depth (Ku‐VOD), a proxy of top‐canopy foliar mass and water content, and separated the signal of Ku‐VOD changes into drought‐induced reductions and subsequent non‐drought gains. Both drought‐induced reductions and non‐drought increases in Ku‐VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku‐VOD reductions during drought and larger non‐drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta‐analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem‐transport safety margins. Additionally, Ku‐VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height‐dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Liyang Liu; Fanxi Gong; Xiuzhi Chen; Yongxian Su; Lei Fan; Shengbiao Wu; Xueqin Yang; Jing Zhang; Wenping Yuan; Philippe Ciais; Chenghu Zhou;doi: 10.1002/rse2.229
AbstractDroughts cause extreme anomalies in tropical forest growth, but the direction and magnitude of tropical forests in response to droughts are still widely debated. Here, we used four satellite‐based canopy growth proxies (CGPs), including three optical and one passive microwave, and in situ fluxes observations from eddy covariance (EC) measurements for a retrospective investigation of the impacts of historical droughts on tropical forest growth from a statistical point of view. Results indicate two opposite directions in drought‐related canopy dynamics across pantropical forests. The canopy of tropical forests with higher CGPs is more vulnerable to drought stress and recovers faster in the post‐drought recovery period. In contrast, the canopy of tropical forests with lower CGPs increases during the drought period and declines in the subsequent recovery period, which is beyond general expectation. In situ measurements from eddy‐covariance flux towers showed that forests with higher gross primary production and latent heat flux decreased photosynthesis and evapotranspiration during the drought period but increased photosynthesis and evapotranspiration faster during the post‐drought recovery period, supporting the findings from satellite observations. Our statistical analysis against climatic factors predicts that higher‐CGPs tress with probably taller and bigger canopies are more responsive to shortage of water availability caused by drought; while lower‐CGPs tress with shorter and smaller canopies are more responsive to sunlight availability and tend to increase their canopy leaves and enhance photosynthesis in sunnier days during the drought period. Our results highlight the differences in tropical forests in responding to drought stress, which are worth incorporated in Earth system models for time‐series evaluations.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing in Ecology and ConservationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rse2.229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing in Ecology and ConservationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rse2.229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Lin Su; Caroline M Ajo-Franklin;pmid: 30849708
The growing abundance of wind and solar power has driven interest in utilizing this renewable energy to make chemicals. One of the most efficient and sophisticated frameworks to solar-to-chemical conversion is bioelectrochemical systems that electrochemically couple inorganic catalysts and microorganisms. In particular, microbial electrosynthesis systems and biohybrid systems have used CO2 and electricity or light, respectively, to synthesize organic acids at energy efficiencies that exceed natural photosynthesis. In parallel, new methods have been recently developed to improve the poor mechanistic understanding of these and other bioelectrochemical systems. Deeper knowledge of these underlying molecular processes and creation of new architectures for bioelectrochemical systems are needed to make these promising technologies scale to a commercially relevant level.
Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2019.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Opinion in B... arrow_drop_down Current Opinion in BiotechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.copbio.2019.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Caroline M. Ajo-Franklin; Tom J. Zajdel; Moshe Baruch; Andrew Prior; Lin Su; Lin Su; Tatsuya Fukushima;pmid: 31880923
Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2022 United States, Denmark, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Adapting Socio-ecological..., EC | TOFDRY, NSF | 3rd Collaborative Researc... +1 projectsNSF| Adapting Socio-ecological Systems to Increased Climate Variability ,EC| TOFDRY ,NSF| 3rd Collaborative Research Network Program (CRN3) ,EC| 4CRussell Doughty; Russell Doughty; Martin Brandt; Sean Crowell; Xiaojun Li; Lei Fan; Fang Liu; Stephen Sitch; Philippe Ciais; Xiangming Xiao; Xiaocui Wu; Berrien Moore; Jean-Pierre Wigneron; Yao Zhang; Yuanwei Qin;arXiv: 2206.07363
Spatial-temporal dynamics of aboveground biomass (AGB) and forest area affect the carbon cycle, climate, and biodiversity in the Brazilian Amazon. Here we investigate inter-annual changes of AGB and forest area by analyzing satellite-based annual AGB and forest area datasets. We found the gross forest area loss was larger in 2019 than in 2015, possibly due to recent loosening of forest protection policies. However, net AGB loss was three times smaller in 2019 than in 2015. During 2010-2019, the Brazilian Amazon had a cumulative gross loss of 4.45 Pg C against a gross gain of 3.78 Pg C, resulting in net AGB loss of 0.67 Pg C. Forest degradation (73%) contributed three times more to the gross AGB loss than deforestation (27%), given that the areal extent of degradation exceeds deforestation. This indicates that forest degradation has become the largest process driving carbon loss and should become a higher policy priority.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01026-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01026-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Chen Wang; Xuli Tang; Xiuzhi Chen; Jean-Pierre Wigneron; Wenping Yuan; Xueqin Yang; Shilong Piao; Qing Ye; Liu Liyang; Liu Liyang; Hui Liu; Yongxian Su; Lei Fan; Hui Yang; Jin Wu; Philippe Ciais; Fanxi Gong; Pierre Gentine; Ying-Ping Wang; Fabienne Maignan; Jiali Shang; Bin He;doi: 10.1111/gcb.16017
pmid: 34854168
AbstractOur limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time‐series records of remotely sensed Ku‐band vegetation optical depth (Ku‐VOD), a proxy of top‐canopy foliar mass and water content, and separated the signal of Ku‐VOD changes into drought‐induced reductions and subsequent non‐drought gains. Both drought‐induced reductions and non‐drought increases in Ku‐VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku‐VOD reductions during drought and larger non‐drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta‐analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem‐transport safety margins. Additionally, Ku‐VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height‐dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Liyang Liu; Fanxi Gong; Xiuzhi Chen; Yongxian Su; Lei Fan; Shengbiao Wu; Xueqin Yang; Jing Zhang; Wenping Yuan; Philippe Ciais; Chenghu Zhou;doi: 10.1002/rse2.229
AbstractDroughts cause extreme anomalies in tropical forest growth, but the direction and magnitude of tropical forests in response to droughts are still widely debated. Here, we used four satellite‐based canopy growth proxies (CGPs), including three optical and one passive microwave, and in situ fluxes observations from eddy covariance (EC) measurements for a retrospective investigation of the impacts of historical droughts on tropical forest growth from a statistical point of view. Results indicate two opposite directions in drought‐related canopy dynamics across pantropical forests. The canopy of tropical forests with higher CGPs is more vulnerable to drought stress and recovers faster in the post‐drought recovery period. In contrast, the canopy of tropical forests with lower CGPs increases during the drought period and declines in the subsequent recovery period, which is beyond general expectation. In situ measurements from eddy‐covariance flux towers showed that forests with higher gross primary production and latent heat flux decreased photosynthesis and evapotranspiration during the drought period but increased photosynthesis and evapotranspiration faster during the post‐drought recovery period, supporting the findings from satellite observations. Our statistical analysis against climatic factors predicts that higher‐CGPs tress with probably taller and bigger canopies are more responsive to shortage of water availability caused by drought; while lower‐CGPs tress with shorter and smaller canopies are more responsive to sunlight availability and tend to increase their canopy leaves and enhance photosynthesis in sunnier days during the drought period. Our results highlight the differences in tropical forests in responding to drought stress, which are worth incorporated in Earth system models for time‐series evaluations.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing in Ecology and ConservationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rse2.229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY ND SAFull-Text: https://hal.science/hal-03604118Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing in Ecology and ConservationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rse2.229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu