Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Synthetic Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Synthetic Biology
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli

Authors: Caroline M. Ajo-Franklin; Tom J. Zajdel; Moshe Baruch; Andrew Prior; Lin Su; Lin Su; Tatsuya Fukushima;

Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli

Abstract

Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.

Keywords

Shewanella, Amino Acid Transport Systems, Bioelectric Energy Sources, Cytochromes c, Electrons, Oxides, Tungsten, Electron Transport, Bacterial Proteins, Mutation, Operon, Electrochemistry, Escherichia coli, Nanoparticles, Genetic Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 10%
bronze