- home
- Search
- Energy Research
- Restricted
- Open Source
- Embargo
- 2. Zero hunger
- 6. Clean water
- US
- SE
- RU
- Energy Research
- Restricted
- Open Source
- Embargo
- 2. Zero hunger
- 6. Clean water
- US
- SE
- RU
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors:Hu, Z.;
Ferraina, R.A.; Ericson, J.F.;Smets, Barth F.;
Smets, Barth F.
Smets, Barth F. in OpenAIREpmid: 16051311
Biodegradation rates of benzoate and related aromatic compounds, 3-nitrobenzoate, 4-chlorobenzoate, 4-chlorophenol, and 2,4-dichlorophenol by unexposed (unacclimated) and long-term exposed (acclimated) biomass were quantified using a modified fed-batch technique. The acclimated biomass was taken after approximately 1-year of operation from three lab-scale sequencing batch reactors (SBR). These reactors were operated under various cycling electron acceptor conditions with a continuous feed of a synthetic wastewater containing biogenic and nonbiogenic chemicals including benzoate, 3-nitrobenzoate, and 4-chlorophenol, but not 4-chlorobenzoate or 2,4-dichlorophenol. The unexposed biomass was taken from a full-scale wastewater treatment plant, which constituted one of the original sources of inoculum for the lab-scale SBRs. The acclimated biomass manifested high removal rates of benzoate and related aromatic compounds with additional removal of structurally similar chemicals (4-chlorobenzoate and 2,4-dichlorophenol). The unacclimated biomass showed no removal of 3-nitrobenzoate, 4-chlorobenzoate or 2,4-dichlorophenol. Addition of biogenic substrates reduced the degradation of most aromatic compounds tested, but it enhanced 2,4-dichlorophenol removal. Biodegradation rates of each aromatic compound with the biomass from the anoxic/aerobic SBR were further determined under anaerobic (absence of aeration and NO3-), anoxic (no aeration, but with surplus NO3-), standard oxygen (DO > 0.2 mg/L), and elevated oxygen (DO > 25 mg/L) conditions. The removal rate of both benzoate and 3-nitrobenzoate decreased under anaerobic condition but not under the anoxic condition; 4-chlorophenol biodegradation, on the other hand, was reduced significantly under both anoxic and anaerobic conditions. The removal rates of aromatic compounds, particularly those of 3-nitrobenzoate and 2,4-dichlorophenol, increased significantly under elevated dissolved oxygen conditions. Our results demonstrated that when the biochemical conditions shifted from oxygen-respiration to nitrate respiration, to anaerobiosis, the biodegradation rates of test aromatic compounds decreased or ceased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2005.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2005.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2001 United StatesPublisher:Springer International Publishing Authors:Lelieveld, J.;
Crutzen, P. J.; Ramanathan, V.;Lelieveld, J.
Lelieveld, J. in OpenAIREAndreae, M. O.;
+23 AuthorsAndreae, M. O.
Andreae, M. O. in OpenAIRELelieveld, J.;
Crutzen, P. J.; Ramanathan, V.;Lelieveld, J.
Lelieveld, J. in OpenAIREAndreae, M. O.;
Brenninkmeijer, C. A. M.;Andreae, M. O.
Andreae, M. O. in OpenAIRECampos, T.;
Cass, G. R.; Dickerson, R. R.; Fischer, H.; de Gouw, J. A.;Campos, T.
Campos, T. in OpenAIREHansel, A.;
Jefferson, A.; Kley, D.;Hansel, A.
Hansel, A. in OpenAIREde Laat, A. T. J.;
Lal, S.;de Laat, A. T. J.
de Laat, A. T. J. in OpenAIRELawrence, M. G.;
Lobert, J. M.; Mayol-Bracero, O. L.; Mitra, A. P.; Novakov, T.; Oltsman, S. J.;Lawrence, M. G.
Lawrence, M. G. in OpenAIREPrather, K. A.;
Reiner, T.; Rodhe, H; Scheeren, H. A.; Sikka, D.; Williams, J.;Prather, K. A.
Prather, K. A. in OpenAIREThe Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6°S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.
Science arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-27460-7_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 666 citations 666 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-27460-7_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Peter Newton;
John Ehrmann; Holly K. Gibbs; Ian McConnel; +2 AuthorsPeter Newton
Peter Newton in OpenAIREPeter Newton;
John Ehrmann; Holly K. Gibbs; Ian McConnel; Kristy J. Buckley; Kristy J. Buckley;Peter Newton
Peter Newton in OpenAIRERoundtables for sustainable beef have evolved in national contexts as well as at the global level as a multi-stakeholder process to address sustainability concerns in the cattle sector. However, due to their relatively recent inception, the literature on the beef roundtables is extremely limited and very little scholarly work has traced their process or impact. We used semi-structured interviews with key informants to examine the governance, actions, and potential impacts of the roundtables for sustainable beef, and identified opportunities and challenges for achieving greater sustainability impact. We found that the beef roundtables are in different stages of development and implementation and that they have diverse approaches based on their geographic contexts. However, they have universally adopted a model of sector-wide continuous improvement, in contrast to roundtables for other commodities, which have in many cases adopted formal certification programs. Activities by the roundtables for sustainable beef have variously included working towards definitions of sustainable beef; setting sustainability principles and criteria; and creating working groups to address specific aspects of sustainability (e.g., verification, deforestation). Our interviews identified opportunities to expand the roundtables’ roles, activities, and sustainability impacts. This study provides a benchmark of the roundtables’ efforts to date, and generates hypotheses and ideas for how they could evolve in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2018.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2018.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Martina Flörke;
L. P. H. van Beek;Martina Flörke
Martina Flörke in OpenAIREStephanie Eisner;
Stephanie Eisner
Stephanie Eisner in OpenAIREYoshihide Wada;
+3 AuthorsYoshihide Wada
Yoshihide Wada in OpenAIREMartina Flörke;
L. P. H. van Beek;Martina Flörke
Martina Flörke in OpenAIREStephanie Eisner;
Stephanie Eisner
Stephanie Eisner in OpenAIREYoshihide Wada;
Yoshihide Wada
Yoshihide Wada in OpenAIREMarc F. P. Bierkens;
Marc F. P. Bierkens
Marc F. P. Bierkens in OpenAIREM.T.H. van Vliet;
M.T.H. van Vliet;M.T.H. van Vliet
M.T.H. van Vliet in OpenAIREWorldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors:Enrico Drioli;
Enrico Drioli;Enrico Drioli
Enrico Drioli in OpenAIREAdele Brunetti;
Adele Brunetti
Adele Brunetti in OpenAIREFrancesca Macedonio;
+1 AuthorsFrancesca Macedonio
Francesca Macedonio in OpenAIREEnrico Drioli;
Enrico Drioli;Enrico Drioli
Enrico Drioli in OpenAIREAdele Brunetti;
Adele Brunetti
Adele Brunetti in OpenAIREFrancesca Macedonio;
Francesca Macedonio
Francesca Macedonio in OpenAIREGiuseppe Barbieri;
Giuseppe Barbieri
Giuseppe Barbieri in OpenAIREAim of the present paper is to investigate and compare the performance of three different possible membrane condenser configurations in terms of amount of recovered liquid water and energy consumption. Membrane condenser is an innovative unit operation utilized for the recovery of evaporated waste water from industrial gases. In the first proposed configuration, the fed waste gas is cooled by cooling water before entering the membrane module; in the second configuration the cooling is obtained inside the membrane module through a cold sweeping gas; the third configuration is in between the two previous ones: the fed waste gas is first partially cooled via an external medium and then a sweeping gas is used for the final cooling of the stream. The achieved results indicate that configuration 2 has the lowest energy consumption, and configuration 3 allows achieving the highest water recovery whereas its energy consumption is in between configuration 1 and 2.
CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors:A. Bonfante;
A. Impagliazzo; N. Fiorentino;A. Bonfante
A. Bonfante in OpenAIREG. Langella;
+2 AuthorsG. Langella
G. Langella in OpenAIREA. Bonfante;
A. Impagliazzo; N. Fiorentino;A. Bonfante
A. Bonfante in OpenAIREG. Langella;
M. Mori; M. Fagnano;G. Langella
G. Langella in OpenAIREpmid: 28575836
Bioenergy crops are well known for their ability to reduce greenhouse gas emissions and increase the soil carbon stock. Although such crops are often held to be in competition with food crops and thus raise the question of current and future food security, at the same time mitigation measures are required to tackle climate change and sustain local farming communities and crop production. However, in some cases the actions envisaged for specific pedo-climatic conditions are not always economically sustainable by farmers. In this frame, energy crops with high environmental adaptability and yields, such as giant reed (Arundo donax L.), may represent an opportunity to improve farm incomes, making marginal areas not suitable for food production once again productive. In so doing, three of the 17 Sustainable Development Goals (SDGs) of the United Nations would be met, namely SDG 2 on food security and sustainable agriculture, SDG 7 on reliable, sustainable and modern energy, and SDG 13 on action to combat climate change and its impacts. In this work, the response of giant reed in the marginal areas of an agricultural district of southern Italy (Destra Sele) and expected farm incomes under climate change (2021-2050) are evaluated. The normalized water productivity index of giant reed was determined (WP; 30.1gm-2) by means of a SWAP agro-hydrological model, calibrated and validated on two years of a long-term field experiment. The model was used to estimate giant reed response (biomass yield) in marginal areas under climate change, and economic evaluation was performed to determine expected farm incomes (woodchips and chopped forage). The results show that woodchip production represents the most profitable option for farmers, yielding a gross margin 50% lower than ordinary high-input maize cultivation across the study area.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.05.214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.05.214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:John C. McEwan;
John C. McEwan
John C. McEwan in OpenAIREArjan Jonker;
Sarah Lewis;Arjan Jonker
Arjan Jonker in OpenAIRESuzanne J Rowe;
+13 AuthorsSuzanne J Rowe
Suzanne J Rowe in OpenAIREJohn C. McEwan;
John C. McEwan
John C. McEwan in OpenAIREArjan Jonker;
Sarah Lewis;Arjan Jonker
Arjan Jonker in OpenAIRESuzanne J Rowe;
Peter H. Janssen; M. Garcia Rendon Calzada; M. Garcia Rendon Calzada; G. Molano; Sarah MacLean; Wanjie Yu; Wanjie Yu; Wanjie Yu; E. Sandoval;Suzanne J Rowe
Suzanne J Rowe in OpenAIREC. S. Pinares-Patiño;
S. M. Hickey; C. Woyimo Woju; C. Woyimo Woju;C. S. Pinares-Patiño
C. S. Pinares-Patiño in OpenAIRESelection of sheep with low enteric methane (CH4) emissions is a greenhouse gas (GHG) mitigation option suitable for pastoral systems. However, the effect of breeding sheep with low enteric CH4 emissions on excreta output and associated CH4 and nitrous oxide (N2O) emissions and therefore total GHG emissions are not known. The objective of the current experiments were to determine excreta output, and estimate associated GHG emissions, from progeny of low and high enteric CH4 per unit of dry matter intake (DMI) selection line sheep (CH4/DMI). The animals were fed two qualities of cut perennial ryegrass-based pasture (very mature vs. vegetative, 12 animals per CH4/DMI line) in Exp. 1 and cut pasture in two repeated seasons (autumn and winter; 15 animals per CH4/DMI line × 2 seasons) in Exp. 2. Total faecal and urine output was determined on individual animals, followed by enteric CH4 emission measurements in respiration chambers. GHG emissions from urine (N2O) and faeces (CH4 and N2O) were estimated based on New Zealand Agricultural GHG Inventory methodology. There was no interaction between CH4/DMI selection line and diet quality in Exp. 1 or seasons in Exp.2. Total daily faecal output of DM, organic matter (OM) and neutral detergent fibre (NDF; all g/d) and associated calculated faecal CH4 emissions were greater for low compared to high CH4/DMI sheep in Exp. 1 (P 4/DMI selection lines in Exp. 2. Nitrogen (N) excretion and N partitioning into urine, faeces and body retention, and calculated excreta N emissions, were mostly similar between CH4/DMI selection line sheep in both experiments. Except, faecal N output (g/d and per unit of N intake) and associated calculated direct faecal N2O-N emissions (g/d) were greater in low compared to high CH4/DMI sheep in Exp. 1 (P 4 emissions were numerically 8% less (P = 0.15) in Exp.1 and 10% less (P = 0.004) in Exp. 2 and total animal level GHG emissions (CH4 and N2O) were numerically 7% less (P = 0.21) in Exp. 1 and 8% less (P = 0.006) in Exp.2 for progeny of the low compared to the high CH4/DMI line sheep. In conclusion, the magnitude of difference in enteric CH4 (expressed as CO2-equivalent) between low and high CH4/DMI selection line sheep were still present when CH4 from faeces and N2O emissions from urine and faeces were also accounted for. The animal genetic traits were expressed independent of environmental factors, i.e. pasture quality and season.
Animal Feed Science ... arrow_drop_down Animal Feed Science and TechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Animal Feed Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anifeedsci.2019.114289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Animal Feed Science ... arrow_drop_down Animal Feed Science and TechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Animal Feed Science and TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anifeedsci.2019.114289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Cornelis A.M. van Gestel;
Cornelis A.M. van Gestel
Cornelis A.M. van Gestel in OpenAIREM. Nazaret González-Alcaraz;
M. Nazaret González-Alcaraz
M. Nazaret González-Alcaraz in OpenAIREClimate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: Stefania Solinas;Paola A. Deligios;
Paola A. Deligios
Paola A. Deligios in OpenAIRELeonardo Sulas;
Leonardo Sulas
Leonardo Sulas in OpenAIREGianluca Carboni;
+2 AuthorsGianluca Carboni
Gianluca Carboni in OpenAIREStefania Solinas;Paola A. Deligios;
Paola A. Deligios
Paola A. Deligios in OpenAIRELeonardo Sulas;
Leonardo Sulas
Leonardo Sulas in OpenAIREGianluca Carboni;
Adriana Virdis;Gianluca Carboni
Gianluca Carboni in OpenAIRELuigi Ledda;
Luigi Ledda
Luigi Ledda in OpenAIREBiomass production helps address the worldwide energy demand. However, some controversial issues have been identified such as the possible conflict between the goal of increasing vegetable biomass and food production and the need to limit environmental impacts. In Mediterranean region, where the supply of some natural resources appears significantly limited (e.g., water) and the competition for land is higher than it was in the past, the objective of evaluating environmental burdens at a regional scale represents an important issue, especially if the assessment considers the farmer scope of increasing productivity. Using a Life Cycle Assessment (LCA) "from cradle to field gate" approach, this paper aims to evaluate land-based environmental sustainability related to four energy crop options. We carried out a LCA differentiating between annual and perennial species and between irrigated (giant reed and sorghum) and rainfed crops (cardoon and milk thistle) to determine their performances and impacts within the same context. The findings suggest that irrigated crops generate larger impacts on the environment than rainfed species and that annual crops (both irrigated and rainfed) are more damaging than the respective perennial crops. The damages were expressed in Ecopoints, where one Ecopoint corresponds to one thousandth of the annual overall environmental burden of an average European inhabitant. Ecopoints for sorghum, giant reed, milk thistle and cardoon are equal to 361, 288, 146, and 138, respectively. Except for irrigation, fertilizers were found to be the input with the largest effect, accounting for 37% (giant reed) to 75% (cardoon) of the environmental burden on the system. The results do not suggest the presence of a winning crop option - i.e., a crop that shows the best environmental performances everywhere and in all categories - since regional environmental burdens are simultaneously related to different factors (e.g., land allocation, crop productivity, and degree of practice intensification) that drive farmer choice. Finally, following a dynamic and innovative perspective, we evaluated the trade-off between productivity and environmental burden for each crop simulating an increasing product variation. We found that environmental burdens would increase more proportionally than crop yields done. Especially the latter finding provides interesting suggestions on energy cropping system integration within agricultural planning under stressed natural resource conditions.
CNR ExploRA arrow_drop_down European Journal of AgronomyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2018.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down European Journal of AgronomyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2018.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:University of Chicago Press Authors:Karen E. van de Wolfshaar;
Tobias van Kooten; Tobias van Kooten; T. Schellekens; +3 AuthorsKaren E. van de Wolfshaar
Karen E. van de Wolfshaar in OpenAIREKaren E. van de Wolfshaar;
Tobias van Kooten; Tobias van Kooten; T. Schellekens; Lennart Persson;Karen E. van de Wolfshaar
Karen E. van de Wolfshaar in OpenAIREDavid Claessen;
André M. de Roos;David Claessen
David Claessen in OpenAIREWe analyze a stage-structured biomass model for size-structured consumer-resource interactions. Maturation of juvenile consumers is modeled with a food-dependent function that consistently translates individual-level assumptions about growth in body size to the population level. Furthermore, the model accounts for stage-specific differences in resource use and mortality between juvenile and adult consumers. Without such differences, the model reduces to the Yodzis and Innes (1992) bioenergetics model, for which we show that model equilibria are characterized by a symmetry property that reproduction and maturation are equally limited by food density. As a consequence, biomass production rate exactly equals loss rate through maintenance and mortality in each consumer stage. Stage-specific differences break up this symmetry and turn specific stages into net producers and others into net losers of biomass. As a consequence, the population in equilibrium can be regulated in two distinct ways: either through total population reproduction or through total population maturation as limiting process. In the case of reproduction regulation, increases in mortality may lead to an increase of juvenile biomass. In the case of maturation regulation, increases in mortality may increase adult biomass. This overcompensation in biomass occurs with increases in both stage-independent and stage-specific mortality, even when the latter targets the stage exhibiting overcompensation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/520119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/520119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu