search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
21,416 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • basic medicine
  • 3. Good health

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: P.O. Awoniran; D.O. Adeyemi;

    The effects of Curcuma longa rhizome on hepatic cells, glycogen, connective tissue fibres and filamentous cytoskeleton were evaluated following KBrO3-induced liver injury in Wistar rats. Thirty-five male rats were randomly divided into seven groups (n=5). Group 1 were normal saline treated rats. Hepatic injury was induced in groups 2 to 7 by oral administration of 100mg/kg KBrO3 for 2 weeks. Following induction, rats in group 2 were sacrificed while groups 3, 4, 5 were given oral dose of EECLOR at 100, 200, 400mg/kg respectively. Group 6 rats were treated with silymarine while group 7 rats were left untreated. The rats were sacrificed and the liver sections were stained with H&E, Masson trichrome, Gordon and Sweets, PAS, Feulgen reaction, anti-vimentin antibody for demonstration of general histoarchitecture, elastic fibre, collagen fibre; glycogen, nuclear DNA and filamentous cytoskeleton respectively. Groups 2, 3, 7 developed intranuclear vacuolation, plasma coagulation, plamolysis, karyopyknosis, karyorrhexis and karyolysis, hyperchromatism, DNA fading and pleomorphism. Immunohistochemical study revealed near negative immunoreaction for vimentin. These pathological changes were ameliorated in EECLOR-treated groups in a manner comparable to silymarine-treated group. The study concluded that ameliorative effects of EECLOR in KBrO3-induced liver injury could be due to its vimentin stabilization property.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Morphologiearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Morphologie
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Morphologie
    Article . 2019
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Morphologiearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Morphologie
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Morphologie
      Article . 2019
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: João A. Lopes; David S.M. Ribeiro; João L.M. Santos; João A.V. Prior;

    Nowadays, the use of a drug to modify a person's behavior with criminal intentions has become a growing public concern. In fact, stealthy drink spiking with certain drugs can cause the incapacitation of a potential victim of assault and in extreme cases can even lead to death. Belonging to the group of drugs used to commit drug-facilitated crimes is glibenclamide, which not only exhibits high sedation secondary effects but when subject to an overdose intake can lead to intense hypoglycemic episodes that could end with death. Suicide attempts and homicides through overdose with glibenclamide have already been reported. In this work and for the first time, it was developed a new methodology for detection of glibenclamide in spiked liquid samples (teas) by fluorometry (λ(ex)=300 nm; λ(em)=404 nm). The novel methodology was also implemented in a miniaturized and portable automatic flow system based in the concept of multipumping with an in-line pre-separation unit. The separation of the drug from the liquid samples was achieved through adsorption of the drug into activated charcoal packed within a mini column followed by elution with a solution composed by ethanol, hydrochloric acid and the surfactant CTAB (70%, 1.0 mol L(-1), 0.01 mol L(-1), respectively). The results allowed to obtain a linear working range for glibenclamide concentrations of up to 50 mg L(-1) (r=0.9999) and the detection limit was about 0.81 mg L(-1) of glibenclamide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytica Chimica Ac...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Analytica Chimica Acta
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytica Chimica Ac...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Analytica Chimica Acta
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nazima Habibi; Saif Uddin; Brett Lyons; Hanan A. Al-Sarawi; +5 Authors

    Marine sediments are a sink for antibiotic resistance genes (ARGs) and antibiotic-resistant microbes (ARMs). Wastewater discharge into the aquatic environment is the dominant pathway for pharmaceuticals reaching aquatic organisms. Hence, the characterization of ARGs is a priority research area. This baseline study reports the presence of ARGs in 12 coastal sediment samples covering the urban coastline of Kuwait through whole-genome metagenomic sequencing. The presence of 402 antibiotic resistance genes (ARGs) were recorded in these samples; the most prevalent were patA, adeF, ErmE, ErmF, TaeA, tetX, mphD, bcrC, srmB, mtrD, baeS, Erm30, vanTE, VIM-7, AcrF, ANT4-1a, tet33, adeB, efmA, and rpsL, which showed resistance against 34 drug classes. Maximum resistance was detected against the beta-lactams (cephalosporins and penam), and 46% of genes originated from the phylum Proteobacteria. Low abundances of ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli) were also recorded. Approximately 42% of ARGs exhibited multiple drug resistance. All the ARGs exhibited spatial variations. The major mode of action was antibiotic efflux, followed by antibiotic inactivation, antibiotic target alteration, antibiotic target protection, and antibiotic target replacement. Our findings supported the occurrence of ARGs in coastal marine sediments and the possibility of their dissemination to surrounding ecosystems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shuwei Hu; Jun Qin; Jin Zhou; Jacques Magdalou; +3 Authors

    Our previous studies showed that prenatal ethanol exposure (PEE) elevated blood total cholesterol (TCH) level in adult offspring rats. This study was aimed at elucidating the intrauterine programming mechanism of hypercholesterolemia in adult rats induced by PEE. Pregnant Wistar rats were intragastrically administered ethanol (4 mg/kg∙d) from gestational day (GD) 9 to 20. The offspring rats were euthanized at GD20 and postnatal week 24. Results showed that PEE decreased serum TCH and HDL-C levels (female and male) as well as LDL-C level (female only) in fetal rats but increased serum TCH level and the TCH/HDL-C and LDL-C/HDL-C ratios in adult rats. Furthermore, PEE elevated serum corticosterone levels but inhibited hepatic insulin-like growth factor 1 (IGF1) signaling pathway, cholesterol synthesis and output in fetal rats. The conversed changes were observed in adult rats. Moreover, histone acetylation (H3K9ac and H3K14ac) and expression of hepatic reverse cholesterol transport (RCT) related genes, scavenger receptor BI and low-density lipoprotein receptor were decreased before and after birth by PEE. In HepG2 cells, cortisol negatively regulated the IGF1 signaling pathway and cholesterol metabolic genes, but this inhibition of the cholesterol metabolic genes could be reversed by glucocorticoid receptor antagonist RU486, whereas exogenous IGF1 treatment only reversed the downregulation of RCT genes by cortisol. We confirmed a "two programming" mechanism for PEE-induced hypercholesterolemia in adult rats. The "first programming" was a glucocorticoid (GC)-induced persistent reduction of RCT genes by epigenetic modifications, and the "second programming" was the negative regulation of cholesterol synthesis and output by the GC-IGF1 axis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Toxicology and Applied Pharmacology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Toxicology and Applied Pharmacology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Román, Juan; Colell Riera, Anna; Blasco, Carmen; Caballería, Juan; +3 Authors

    The oxidative metabolism of ethanol by the cytochrome P450 2E1 (CYP2E1) has been recognized to contribute to the ethanol-induced deleterious effects through the induction of oxidative stress. This study compared the effect of ethanol and acetaldehyde in the induction of oxidative stress and activation of transcription factors nuclear factor-κB (NF-κB) and activating protein 1 (AP-1) in HepG2 cells, which do not express CYP2E1, and HepG2 cells transfected with CYP2E1 (E47 cells). Neither ethanol (80 mmol/L) nor acetaldehyde (25-200 μmol/L) caused oxidative stress in HepG2 cells, an effect that was independent of blocking reduced glutathione (GSH) synthesis with buthionine-l -sulfoximine (BSO). However, BSO preincubation caused an overproduction of peroxides and activation of NF-κB and AP-1 in E47 cells even in the absence of ethanol. Furthermore, the incubation of E47 cells with ethanol (80 mmol/L for up to 5 days) depleted cellular GSH stores in both cytosol and mitochondria, reflecting the induction of oxidative stress. Ethanol activated NF-κB and AP-1 in E47 cells, an effect that was prevented by 4-methylpyrazole, potentiated by cyanamide, and attenuated by trolox C. Interestingly, however, despite the inability of acetaldehyde to induce oxidative stress in HepG2, acetaldehyde activated NF-κB and AP-1; in contrast, ethanol failed to activate these transcription factors in HepG2. Thus, our findings indicate that activation of NF-κB and AP-1 by ethanol and acetaldehyde occurs through distinct mechanisms. CYP2E1 is indispensable in the induction of oxidative stress from ethanol, whereas the activation of NF-κB and AP-1 by acetaldehyde is independent of oxidative stress.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hepatology
    Article . 1999 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    Hepatology
    Article . 1999
    Hepatology
    Article . 1999 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    88
    citations88
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hepatology
      Article . 1999 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      Hepatology
      Article . 1999
      Hepatology
      Article . 1999 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jan Breg; Herman Van Halbeek; Marie-Christine Houvenaghel; Geneviève Lamblin; +2 Authors

    The carbohydrate chains of the bronchial-mucus glycoproteins of six cystic fibrosis patients with blood group O were released by alkaline borohydride treatment. Low-molecular-mass, monosialyl oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high-performance liquid chromatography. Structural characterization was performed by 500-MHz 1H-NMR spectroscopy in combination with quantitative sugar analysis. The established structures range in size from tetra- up to heptasaccharides. They are all sialyl analogs of neutral oligosaccharides that were characterized previously [Lamblin G., Boersma A., Lhermitte M., Roussel P., Mutsaers J. H. G. M., Van Halbeek H. & Vliegenthart J. F. G. (1984) Eur. J. Biochem. 143, 227-236]. The NeuAc residue was found to occur either in alpha (2----3)-linkage to Gal, or in alpha (2----6)-linkage to GalNAc-ol or Gal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Biochemistry
    Article . 1987 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    66
    citations66
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Biochemistry
      Article . 1987 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Steve S. Choi; Anna Mae Diehl; Vanessa Teaberry; Wing-Kin Syn;

    Subpopulations of individuals with alcohol-induced fatty livers and nonalcoholic steatosis develop steatohepatitis. Steatohepatitis is defined histologically: increased numbers of injured and dying hepatocytes distinguish this condition from simple steatosis. The increased hepatocyte death is generally accompanied by hepatic accumulation of inflammatory cells and sometimes increases in myofibroblastic cells, leading to hepatic fibrosis and eventually, cirrhosis. The purpose of this review is to summarize similarities and differences in the pathogenesis of steatohepatitis in alcoholic fatty liver disease and nonalcoholic fatty liver disease.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seminars in Liver Di...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Seminars in Liver Disease
    Article . 2009 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seminars in Liver Di...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Seminars in Liver Disease
      Article . 2009 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Birte Sievers; Jörg Hausdorf; Volkmar Jansson; Susanne Mayer-Wagner; +5 Authors

    AbstractThe aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm2) was applied to femoral heads of 18 adult Sprague–Dawley rats. Two sham‐treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin‐O‐stained sections. Expression of tenascin‐C and chitinase 3‐like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real‐time polymerase chain reaction (PCR) was used to examine collagen (II)α1 (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin‐C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough‐surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High‐energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1050–1056, 2010

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Orthopaed...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Orthopaedic Research®
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Orthopaed...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Orthopaedic Research®
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John M. Boyce; Richard A Martinello;

    Background: Although substantial efforts have been made to improve hand hygiene (HH) compliance among healthcare personnel (HCP), much less attention has been devoted to improving HH technique. To date, no standard method for assessing HH technique has been widely adopted by hospitals. Because applying an alcohol-based hand sanitizer (ABHS) transiently reduces adjacent skin temperature, we explored the feasibility of using thermal imaging to determine whether ABHS has been applied to fingertips and thumbs, areas often missed by HCP. Methods: A convenience sample of 12 Quality and Safety staff volunteered for the study. A FLIR One Pro thermal camera attached to an iPhone was used to obtain thermal images of the palmar aspect of each volunteer’s dominant hand before applying ~1.8 mL ABHS gel, immediately after hands felt dry, and at 1 minute and 2 minutes later. Spot temperature readings of the mid-palm area and middle finger were recorded at each time point. The sex and estimated hand surface area (HSA in cm2) of each volunteer were recorded. Results: In 11 of 12 volunteers, thermal imaging showed a significant decrease in mid-palm and middle finger skin temperatures after performing HH (paired t test P < .01 for both), especially for the fingers and thumb, indicating that ABHS was applied to these areas (Fig. 1). When HH was performed with ABHS and the thumb was purposefully excluded, the lack of colorimetric change in the thumb was visible (Fig. 2). The palmar area showed the least drop in temperature and reverted to normal temperature more quickly. Immediate post-HH mid-palm temperature change ranged from +0.5 to −2.7°C, with a significantly greater mean temperature drop with small or medium hands than with large hands (Mann-Whitney U test P = .048). With some volunteers, the color changes lasted 1 minute or longer. However, for persons with “cold” fingers at baseline, it was more difficult to draw conclusions from the gross assessment for colorimetric change. Conclusions: Thermal imaging of HH performance shows promise as an HH assessment technique and may be useful to determine whether HCP have applied ABHS to their fingertips and thumbs. Additional studies involving a much larger number of HCP under varying conditions are needed to determine whether thermal imaging can be a practical modality for teaching HH technique, for routinely monitoring HH technique, or as a research tool for studying the dynamics of HH using ABHS.Funding: NoneDisclosures: None

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Stewar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Antimicrobial Stewardship &amp; Healthcare Epidemiology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    American Journal of Infection Control
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Stewar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Antimicrobial Stewardship &amp; Healthcare Epidemiology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      American Journal of Infection Control
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Teng-Chieh Hsu; Ting-Hsiang Lin; Chiung-Fang Huang; Wen-Song Hwang; +2 Authors

    Abstract The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD+)-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP+)-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1 % yeast extract, 2 % peptone, and 2 % xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32 g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99 g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Industrial Microbiology and Biotechnology
    Article . 2012 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    gold
    Published in a Diamond OA journal
    8
    citations8
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Industrial Microbiology and Biotechnology
      Article . 2012 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
21,416 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: P.O. Awoniran; D.O. Adeyemi;

    The effects of Curcuma longa rhizome on hepatic cells, glycogen, connective tissue fibres and filamentous cytoskeleton were evaluated following KBrO3-induced liver injury in Wistar rats. Thirty-five male rats were randomly divided into seven groups (n=5). Group 1 were normal saline treated rats. Hepatic injury was induced in groups 2 to 7 by oral administration of 100mg/kg KBrO3 for 2 weeks. Following induction, rats in group 2 were sacrificed while groups 3, 4, 5 were given oral dose of EECLOR at 100, 200, 400mg/kg respectively. Group 6 rats were treated with silymarine while group 7 rats were left untreated. The rats were sacrificed and the liver sections were stained with H&E, Masson trichrome, Gordon and Sweets, PAS, Feulgen reaction, anti-vimentin antibody for demonstration of general histoarchitecture, elastic fibre, collagen fibre; glycogen, nuclear DNA and filamentous cytoskeleton respectively. Groups 2, 3, 7 developed intranuclear vacuolation, plasma coagulation, plamolysis, karyopyknosis, karyorrhexis and karyolysis, hyperchromatism, DNA fading and pleomorphism. Immunohistochemical study revealed near negative immunoreaction for vimentin. These pathological changes were ameliorated in EECLOR-treated groups in a manner comparable to silymarine-treated group. The study concluded that ameliorative effects of EECLOR in KBrO3-induced liver injury could be due to its vimentin stabilization property.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Morphologiearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Morphologie
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Morphologie
    Article . 2019
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Morphologiearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Morphologie
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Morphologie
      Article . 2019
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: João A. Lopes; David S.M. Ribeiro; João L.M. Santos; João A.V. Prior;

    Nowadays, the use of a drug to modify a person's behavior with criminal intentions has become a growing public concern. In fact, stealthy drink spiking with certain drugs can cause the incapacitation of a potential victim of assault and in extreme cases can even lead to death. Belonging to the group of drugs used to commit drug-facilitated crimes is glibenclamide, which not only exhibits high sedation secondary effects but when subject to an overdose intake can lead to intense hypoglycemic episodes that could end with death. Suicide attempts and homicides through overdose with glibenclamide have already been reported. In this work and for the first time, it was developed a new methodology for detection of glibenclamide in spiked liquid samples (teas) by fluorometry (λ(ex)=300 nm; λ(em)=404 nm). The novel methodology was also implemented in a miniaturized and portable automatic flow system based in the concept of multipumping with an in-line pre-separation unit. The separation of the drug from the liquid samples was achieved through adsorption of the drug into activated charcoal packed within a mini column followed by elution with a solution composed by ethanol, hydrochloric acid and the surfactant CTAB (70%, 1.0 mol L(-1), 0.01 mol L(-1), respectively). The results allowed to obtain a linear working range for glibenclamide concentrations of up to 50 mg L(-1) (r=0.9999) and the detection limit was about 0.81 mg L(-1) of glibenclamide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytica Chimica Ac...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Analytica Chimica Acta
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytica Chimica Ac...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Analytica Chimica Acta
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nazima Habibi; Saif Uddin; Brett Lyons; Hanan A. Al-Sarawi; +5 Authors

    Marine sediments are a sink for antibiotic resistance genes (ARGs) and antibiotic-resistant microbes (ARMs). Wastewater discharge into the aquatic environment is the dominant pathway for pharmaceuticals reaching aquatic organisms. Hence, the characterization of ARGs is a priority research area. This baseline study reports the presence of ARGs in 12 coastal sediment samples covering the urban coastline of Kuwait through whole-genome metagenomic sequencing. The presence of 402 antibiotic resistance genes (ARGs) were recorded in these samples; the most prevalent were patA, adeF, ErmE, ErmF, TaeA, tetX, mphD, bcrC, srmB, mtrD, baeS, Erm30, vanTE, VIM-7, AcrF, ANT4-1a, tet33, adeB, efmA, and rpsL, which showed resistance against 34 drug classes. Maximum resistance was detected against the beta-lactams (cephalosporins and penam), and 46% of genes originated from the phylum Proteobacteria. Low abundances of ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli) were also recorded. Approximately 42% of ARGs exhibited multiple drug resistance. All the ARGs exhibited spatial variations. The major mode of action was antibiotic efflux, followed by antibiotic inactivation, antibiotic target alteration, antibiotic target protection, and antibiotic target replacement. Our findings supported the occurrence of ARGs in coastal marine sediments and the possibility of their dissemination to surrounding ecosystems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shuwei Hu; Jun Qin; Jin Zhou; Jacques Magdalou; +3 Authors

    Our previous studies showed that prenatal ethanol exposure (PEE) elevated blood total cholesterol (TCH) level in adult offspring rats. This study was aimed at elucidating the intrauterine programming mechanism of hypercholesterolemia in adult rats induced by PEE. Pregnant Wistar rats were intragastrically administered ethanol (4 mg/kg∙d) from gestational day (GD) 9 to 20. The offspring rats were euthanized at GD20 and postnatal week 24. Results showed that PEE decreased serum TCH and HDL-C levels (female and male) as well as LDL-C level (female only) in fetal rats but increased serum TCH level and the TCH/HDL-C and LDL-C/HDL-C ratios in adult rats. Furthermore, PEE elevated serum corticosterone levels but inhibited hepatic insulin-like growth factor 1 (IGF1) signaling pathway, cholesterol synthesis and output in fetal rats. The conversed changes were observed in adult rats. Moreover, histone acetylation (H3K9ac and H3K14ac) and expression of hepatic reverse cholesterol transport (RCT) related genes, scavenger receptor BI and low-density lipoprotein receptor were decreased before and after birth by PEE. In HepG2 cells, cortisol negatively regulated the IGF1 signaling pathway and cholesterol metabolic genes, but this inhibition of the cholesterol metabolic genes could be reversed by glucocorticoid receptor antagonist RU486, whereas exogenous IGF1 treatment only reversed the downregulation of RCT genes by cortisol. We confirmed a "two programming" mechanism for PEE-induced hypercholesterolemia in adult rats. The "first programming" was a glucocorticoid (GC)-induced persistent reduction of RCT genes by epigenetic modifications, and the "second programming" was the negative regulation of cholesterol synthesis and output by the GC-IGF1 axis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Toxicology and Applied Pharmacology
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Toxicology and Applied Pharmacology
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Román, Juan; Colell Riera, Anna; Blasco, Carmen; Caballería, Juan; +3 Authors

    The oxidative metabolism of ethanol by the cytochrome P450 2E1 (CYP2E1) has been recognized to contribute to the ethanol-induced deleterious effects through the induction of oxidative stress. This study compared the effect of ethanol and acetaldehyde in the induction of oxidative stress and activation of transcription factors nuclear factor-κB (NF-κB) and activating protein 1 (AP-1) in HepG2 cells, which do not express CYP2E1, and HepG2 cells transfected with CYP2E1 (E47 cells). Neither ethanol (80 mmol/L) nor acetaldehyde (25-200 μmol/L) caused oxidative stress in HepG2 cells, an effect that was independent of blocking reduced glutathione (GSH) synthesis with buthionine-l -sulfoximine (BSO). However, BSO preincubation caused an overproduction of peroxides and activation of NF-κB and AP-1 in E47 cells even in the absence of ethanol. Furthermore, the incubation of E47 cells with ethanol (80 mmol/L for up to 5 days) depleted cellular GSH stores in both cytosol and mitochondria, reflecting the induction of oxidative stress. Ethanol activated NF-κB and AP-1 in E47 cells, an effect that was prevented by 4-methylpyrazole, potentiated by cyanamide, and attenuated by trolox C. Interestingly, however, despite the inability of acetaldehyde to induce oxidative stress in HepG2, acetaldehyde activated NF-κB and AP-1; in contrast, ethanol failed to activate these transcription factors in HepG2. Thus, our findings indicate that activation of NF-κB and AP-1 by ethanol and acetaldehyde occurs through distinct mechanisms. CYP2E1 is indispensable in the induction of oxidative stress from ethanol, whereas the activation of NF-κB and AP-1 by acetaldehyde is independent of oxidative stress.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hepatology
    Article . 1999 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    Hepatology
    Article . 1999
    Hepatology
    Article . 1999 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    88
    citations88
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hepatology
      Article . 1999 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      Hepatology
      Article . 1999
      Hepatology
      Article . 1999 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jan Breg; Herman Van Halbeek; Marie-Christine Houvenaghel; Geneviève Lamblin; +2 Authors

    The carbohydrate chains of the bronchial-mucus glycoproteins of six cystic fibrosis patients with blood group O were released by alkaline borohydride treatment. Low-molecular-mass, monosialyl oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high-performance liquid chromatography. Structural characterization was performed by 500-MHz 1H-NMR spectroscopy in combination with quantitative sugar analysis. The established structures range in size from tetra- up to heptasaccharides. They are all sialyl analogs of neutral oligosaccharides that were characterized previously [Lamblin G., Boersma A., Lhermitte M., Roussel P., Mutsaers J. H. G. M., Van Halbeek H. & Vliegenthart J. F. G. (1984) Eur. J. Biochem. 143, 227-236]. The NeuAc residue was found to occur either in alpha (2----3)-linkage to Gal, or in alpha (2----6)-linkage to GalNAc-ol or Gal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Biochemistry
    Article . 1987 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    66
    citations66
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Biochemistry
      Article . 1987 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Steve S. Choi; Anna Mae Diehl; Vanessa Teaberry; Wing-Kin Syn;

    Subpopulations of individuals with alcohol-induced fatty livers and nonalcoholic steatosis develop steatohepatitis. Steatohepatitis is defined histologically: increased numbers of injured and dying hepatocytes distinguish this condition from simple steatosis. The increased hepatocyte death is generally accompanied by hepatic accumulation of inflammatory cells and sometimes increases in myofibroblastic cells, leading to hepatic fibrosis and eventually, cirrhosis. The purpose of this review is to summarize similarities and differences in the pathogenesis of steatohepatitis in alcoholic fatty liver disease and nonalcoholic fatty liver disease.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seminars in Liver Di...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Seminars in Liver Disease
    Article . 2009 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seminars in Liver Di...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Seminars in Liver Disease
      Article . 2009 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Birte Sievers; Jörg Hausdorf; Volkmar Jansson; Susanne Mayer-Wagner; +5 Authors

    AbstractThe aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm2) was applied to femoral heads of 18 adult Sprague–Dawley rats. Two sham‐treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin‐O‐stained sections. Expression of tenascin‐C and chitinase 3‐like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real‐time polymerase chain reaction (PCR) was used to examine collagen (II)α1 (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin‐C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough‐surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High‐energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1050–1056, 2010

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Orthopaed...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Orthopaedic Research®
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Orthopaed...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Orthopaedic Research®
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John M. Boyce; Richard A Martinello;

    Background: Although substantial efforts have been made to improve hand hygiene (HH) compliance among healthcare personnel (HCP), much less attention has been devoted to improving HH technique. To date, no standard method for assessing HH technique has been widely adopted by hospitals. Because applying an alcohol-based hand sanitizer (ABHS) transiently reduces adjacent skin temperature, we explored the feasibility of using thermal imaging to determine whether ABHS has been applied to fingertips and thumbs, areas often missed by HCP. Methods: A convenience sample of 12 Quality and Safety staff volunteered for the study. A FLIR One Pro thermal camera attached to an iPhone was used to obtain thermal images of the palmar aspect of each volunteer’s dominant hand before applying ~1.8 mL ABHS gel, immediately after hands felt dry, and at 1 minute and 2 minutes later. Spot temperature readings of the mid-palm area and middle finger were recorded at each time point. The sex and estimated hand surface area (HSA in cm2) of each volunteer were recorded. Results: In 11 of 12 volunteers, thermal imaging showed a significant decrease in mid-palm and middle finger skin temperatures after performing HH (paired t test P < .01 for both), especially for the fingers and thumb, indicating that ABHS was applied to these areas (Fig. 1). When HH was performed with ABHS and the thumb was purposefully excluded, the lack of colorimetric change in the thumb was visible (Fig. 2). The palmar area showed the least drop in temperature and reverted to normal temperature more quickly. Immediate post-HH mid-palm temperature change ranged from +0.5 to −2.7°C, with a significantly greater mean temperature drop with small or medium hands than with large hands (Mann-Whitney U test P = .048). With some volunteers, the color changes lasted 1 minute or longer. However, for persons with “cold” fingers at baseline, it was more difficult to draw conclusions from the gross assessment for colorimetric change. Conclusions: Thermal imaging of HH performance shows promise as an HH assessment technique and may be useful to determine whether HCP have applied ABHS to their fingertips and thumbs. Additional studies involving a much larger number of HCP under varying conditions are needed to determine whether thermal imaging can be a practical modality for teaching HH technique, for routinely monitoring HH technique, or as a research tool for studying the dynamics of HH using ABHS.Funding: NoneDisclosures: None

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Stewar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Antimicrobial Stewardship &amp; Healthcare Epidemiology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    American Journal of Infection Control
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Stewar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Antimicrobial Stewardship &amp; Healthcare Epidemiology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      American Journal of Infection Control
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Teng-Chieh Hsu; Ting-Hsiang Lin; Chiung-Fang Huang; Wen-Song Hwang; +2 Authors

    Abstract The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD+)-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP+)-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1 % yeast extract, 2 % peptone, and 2 % xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32 g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99 g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Industrial Microbiology and Biotechnology
    Article . 2012 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    gold
    Published in a Diamond OA journal
    8
    citations8
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Industrial Microbiology and Biotechnology
      Article . 2012 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.