- home
- Search
- Energy Research
- Open Access
- Closed Access
- Embargo
- National Research Council
- Energy Research
- Open Access
- Closed Access
- Embargo
- National Research Council
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2021 SpainPublisher:Elsevier BV Francesco Colloca; Fabio Bulleri; Antonio Di Franco; Cristiana Guerranti; Monia Renzi; Enric Ballesteros; Maria Cristina Mangano; Carlo Cerrano; Antonio Pusceddu; Gianluca Sarà; Ferdinando Boero; Ferdinando Boero; Gil Rilov; Stanislao Bevilacqua; Joaquim Garrabou; Joaquim Garrabou; Marco Milazzo; Laura Airoldi; Laura Airoldi; Fiorenza Micheli; Benjamin S. Halpern; Paolo Guidetti; Paolo Guidetti; Joachim Claudet; Lisandro Benedetti-Cecchi; Giuseppe Guarnieri; Martina Coppari; Antonio Terlizzi; Antonio Terlizzi; Emma Cebrian; Simonetta Fraschetti; Stelios Katsanevakis;Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:AIP Publishing Authors: Paul E. Smith; Robert M. Mazo; E. Matteoli;The method developed in a previous paper [R. Mazo, J. Chem. Phys. 129, 154101 (2008)] for extracting information on the size of relative fluctuations in multicomponent systems is tested on ten binary systems and one ternary system. For the binary systems, it is found that the approximation works well for mole fractions in the range of 0.15–0.85 in most cases. For the ternary case, the method inherently yields less information and is valid only over a more restricted range for the case studied (chloroform-methanol-acetone). It is found that the predicted ratio of number fluctuations is approximately equal to the ratio of molar volumes of the components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3154582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3154582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 ItalyPublisher:IEEE Authors: Carlo Mastroianni; Giandomenico Spezzano; Andrea Giordano; Luigi Scarcello;In recent years, the exploitation of weather-dependent renewable energy sources, available at distributed local sites, has led to the increased volatility of electrical energy supply. In order to compensate for the intermittent nature of renewable energy sources and remedy to possible imbalance problems on the national grids, the users of the electricity system are required to reduce interactions with the grid and increase the self-consumption of energy. Accordingly, prosumers equipped with local generation and storage systems, and enriched with the Internet of Things (IoT) technology, are encouraged to join the energy communities, as they can produce, store and share energy with the other members of the community. The proper sizing of storage systems is essential in this context. This paper presents an IoT-based management model that exploits the energy sharing among the prosumers of a community, with the aim of evaluating the impact of the storage systems' sizes on the energy self-consumption and on the cost savings that can be achieved.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Mohamed M. Saffan; Mohamed A. Koriem; Ahmed El-Henawy; Shimaa El-Mahdy; Hassan El-Ramady; Fathy Elbehiry; Alaa El-Dein Omara; Yousry Bayoumi; Khandsuren Badgar; József Prokisch;doi: 10.3390/su14063236
Under the global water crisis, utilizing low-quality water sources in agriculture for irrigation has offered an effective solution to address the shortage of water. Using an excess of low-quality water sources may cause serious risks to the environment, which threaten crop safety and human health. Three kinds of irrigation water (0.413, 1.44, and 2.84 dS m−1) were selected under foliar-applied bio-nanofertilizers of selenium (100 mg L−1) and copper (100 mg L−1) in individual and/or combined application. The nanofertilizers were tested on the production of tomato under greenhouse. After harvesting, the quality of tomato yield and soil biology was evaluated. Using saline water for irrigation caused many main features in this study such as increasing the accumulation of salts, soil organic matter, and CaCO3 in soil by 84.6, 32.3, and 18.4%, respectively, compared to control. The highest tomato yield (2.07 kg plant−1) and soluble solids content (9.24%) were recorded after irrigation with low water quality (2.84 dS m−1) and nano-Cu fertilization. The plant enzymatic antioxidants and soil biological activity were decreased in general due to the salinity stress of irrigation water. After 30 days from transplanting, all studied soil biological parameters (soil microbial counts and enzymes) were higher than the same parameters at harvesting (80 days) under different categories of water quality. The values of all soil biological parameters were decreased by increasing water salinity. This study was carried out to answer the question of whether the combined nanofertilizers of selenium and copper can promote tomato production under saline water irrigation. Further investigations are still needed concerning different applied doses of these nanofertilizers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 ItalyPublisher:Elsevier BV Elisa Sani; Marco Meucci; Luca Mercatelli; Jean-Louis Sans; Eric Bêche; L. Marconi; S. Coraggia; Paola Sansoni; Daniela Fontani; David Jafrancesco; Laura Silvestroni; Diletta Sciti;Concentrating Solar Power (CSP) is considered to be one of the most promising and sustainable technologies for electricity production in the future, and as efficiency of solar thermal systems rapidly increases with increasing working temperature, the big challenge for future is to develop novel solutions for solar receivers. In this framework, Ultra-High Temperature Ceramics (UHTCs) are mainly studied as thermal protection materials for aerospace and military applications, but their peculiar properties (very high melting points and good thermo-mechanical properties at high temperatures) can be advantageously exploited to increase the operating temperature of thermodynamic solar plants in concentrating solar power systems. This work is devoted to the study and characterization of the spectral reflectance of hafnium and zirconium diborides containing MoSi2 as secondary phase in order to evaluate their potential as novel solar absorbers. To assess the spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the UV wavelength region to the mid-infrared, considering different levels of porosity for each system, in order to understand how porosity affect spectral reflectance. Moreover, for zirconium diboride and hafnium diboride composites containing 10vol% of MoSi2 sintering aid, the thermal emittance was measured in the 1100-1400K temperature range in PROMES-CNRS solar furnace. Data obtained were compared with spectral characteristics and high temperature emittance of a monolithic silicon carbide. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, ItalyPublisher:Springer Science and Business Media LLC Annelene Pengerud; Marie-France Dignac; Giacomo Certini; Line Tau Strand; Claudia Forte; Daniel P. Rasse;Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a "palsa" (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Alessandro Cannavale; Francesco Martellotta; Francesco Fiorito; Ubaldo Ayr;doi: 10.3390/en13081929
This paper holds a critical review of current research activities dealing with smart architectural glazing worldwide. Hereafter, the main trends are analyzed and critically reported, with open issues, challenges, and opportunities, providing an accurate description of technological evolution of devices in time. This manuscript deals with some well-known, highly performing technologies, such as semitransparent photovoltaics and novel photoelectrochromic devices, the readiest, probably, to reach the final stage of development, to disclose the manifold advantages of multifunctional, smart glazing. The complex, overall effects of their building integration are also reported, especially regarding energy balance and indoor visual comfort in buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:National Documentation Centre (EKT) CATALDO PIERRI; PAOLO COLANGELO; MICHELA DEL PASQUA; CATERINA LONGO; ADRIANA GIANGRANDE;doi: 10.12681/mms.19732
handle: 11586/247530
Filter feeding invertebrates are a relevant component of fouling assemblages with a pivotal role in ecological processes, since they improve water quality, enhance habitat heterogeneity and transfer organic matter from the water column to the benthos. They modulate the availability of resources to other species, with effects on the density and behavior of the surrounding macrofauna. The fanworm Sabella spallanzanii, one of the largest and most abundant Mediterranean filter feeders, provides a shelter for predation and a secondary substrate for algae and settlement for sessile invertebrates. We tested its role in driving the structure of fouling assemblages, through a removal experiment.The experiment was one-year-long, with four sampling times. The effect of the removal on the fouling community was marginal in terms of species richness and evenness, while the biomass showed important differences, with a constant increase over time with higher values in the samples containing S. spallanzanii. At the end of observations, the biomass reached the value of 3917 g DW m-2 in controls and 2073 g DW m-2 in treatments. The empty space left by fanworms was not used by other species with similar biomasses. It is possible that the functioning of fouling communities may, in the event of loss of species, fluctuate in terms of biomass mobilization to different compartments, either towards the pelagic compartment or to the detritus chain. In systems with reduced water turnover, this by-pass can have important consequences in terms of stability and ecological balance.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11586/247530Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12681/mms.19732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11586/247530Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12681/mms.19732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2021 SpainPublisher:Elsevier BV Francesco Colloca; Fabio Bulleri; Antonio Di Franco; Cristiana Guerranti; Monia Renzi; Enric Ballesteros; Maria Cristina Mangano; Carlo Cerrano; Antonio Pusceddu; Gianluca Sarà; Ferdinando Boero; Ferdinando Boero; Gil Rilov; Stanislao Bevilacqua; Joaquim Garrabou; Joaquim Garrabou; Marco Milazzo; Laura Airoldi; Laura Airoldi; Fiorenza Micheli; Benjamin S. Halpern; Paolo Guidetti; Paolo Guidetti; Joachim Claudet; Lisandro Benedetti-Cecchi; Giuseppe Guarnieri; Martina Coppari; Antonio Terlizzi; Antonio Terlizzi; Emma Cebrian; Simonetta Fraschetti; Stelios Katsanevakis;Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:AIP Publishing Authors: Paul E. Smith; Robert M. Mazo; E. Matteoli;The method developed in a previous paper [R. Mazo, J. Chem. Phys. 129, 154101 (2008)] for extracting information on the size of relative fluctuations in multicomponent systems is tested on ten binary systems and one ternary system. For the binary systems, it is found that the approximation works well for mole fractions in the range of 0.15–0.85 in most cases. For the ternary case, the method inherently yields less information and is valid only over a more restricted range for the case studied (chloroform-methanol-acetone). It is found that the predicted ratio of number fluctuations is approximately equal to the ratio of molar volumes of the components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3154582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3154582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 ItalyPublisher:IEEE Authors: Carlo Mastroianni; Giandomenico Spezzano; Andrea Giordano; Luigi Scarcello;In recent years, the exploitation of weather-dependent renewable energy sources, available at distributed local sites, has led to the increased volatility of electrical energy supply. In order to compensate for the intermittent nature of renewable energy sources and remedy to possible imbalance problems on the national grids, the users of the electricity system are required to reduce interactions with the grid and increase the self-consumption of energy. Accordingly, prosumers equipped with local generation and storage systems, and enriched with the Internet of Things (IoT) technology, are encouraged to join the energy communities, as they can produce, store and share energy with the other members of the community. The proper sizing of storage systems is essential in this context. This paper presents an IoT-based management model that exploits the energy sharing among the prosumers of a community, with the aim of evaluating the impact of the storage systems' sizes on the energy self-consumption and on the cost savings that can be achieved.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon48941.2020.9236520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Mohamed M. Saffan; Mohamed A. Koriem; Ahmed El-Henawy; Shimaa El-Mahdy; Hassan El-Ramady; Fathy Elbehiry; Alaa El-Dein Omara; Yousry Bayoumi; Khandsuren Badgar; József Prokisch;doi: 10.3390/su14063236
Under the global water crisis, utilizing low-quality water sources in agriculture for irrigation has offered an effective solution to address the shortage of water. Using an excess of low-quality water sources may cause serious risks to the environment, which threaten crop safety and human health. Three kinds of irrigation water (0.413, 1.44, and 2.84 dS m−1) were selected under foliar-applied bio-nanofertilizers of selenium (100 mg L−1) and copper (100 mg L−1) in individual and/or combined application. The nanofertilizers were tested on the production of tomato under greenhouse. After harvesting, the quality of tomato yield and soil biology was evaluated. Using saline water for irrigation caused many main features in this study such as increasing the accumulation of salts, soil organic matter, and CaCO3 in soil by 84.6, 32.3, and 18.4%, respectively, compared to control. The highest tomato yield (2.07 kg plant−1) and soluble solids content (9.24%) were recorded after irrigation with low water quality (2.84 dS m−1) and nano-Cu fertilization. The plant enzymatic antioxidants and soil biological activity were decreased in general due to the salinity stress of irrigation water. After 30 days from transplanting, all studied soil biological parameters (soil microbial counts and enzymes) were higher than the same parameters at harvesting (80 days) under different categories of water quality. The values of all soil biological parameters were decreased by increasing water salinity. This study was carried out to answer the question of whether the combined nanofertilizers of selenium and copper can promote tomato production under saline water irrigation. Further investigations are still needed concerning different applied doses of these nanofertilizers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 ItalyPublisher:Elsevier BV Elisa Sani; Marco Meucci; Luca Mercatelli; Jean-Louis Sans; Eric Bêche; L. Marconi; S. Coraggia; Paola Sansoni; Daniela Fontani; David Jafrancesco; Laura Silvestroni; Diletta Sciti;Concentrating Solar Power (CSP) is considered to be one of the most promising and sustainable technologies for electricity production in the future, and as efficiency of solar thermal systems rapidly increases with increasing working temperature, the big challenge for future is to develop novel solutions for solar receivers. In this framework, Ultra-High Temperature Ceramics (UHTCs) are mainly studied as thermal protection materials for aerospace and military applications, but their peculiar properties (very high melting points and good thermo-mechanical properties at high temperatures) can be advantageously exploited to increase the operating temperature of thermodynamic solar plants in concentrating solar power systems. This work is devoted to the study and characterization of the spectral reflectance of hafnium and zirconium diborides containing MoSi2 as secondary phase in order to evaluate their potential as novel solar absorbers. To assess the spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the UV wavelength region to the mid-infrared, considering different levels of porosity for each system, in order to understand how porosity affect spectral reflectance. Moreover, for zirconium diboride and hafnium diboride composites containing 10vol% of MoSi2 sintering aid, the thermal emittance was measured in the 1100-1400K temperature range in PROMES-CNRS solar furnace. Data obtained were compared with spectral characteristics and high temperature emittance of a monolithic silicon carbide. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, ItalyPublisher:Springer Science and Business Media LLC Annelene Pengerud; Marie-France Dignac; Giacomo Certini; Line Tau Strand; Claudia Forte; Daniel P. Rasse;Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a "palsa" (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-017-0373-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Alessandro Cannavale; Francesco Martellotta; Francesco Fiorito; Ubaldo Ayr;doi: 10.3390/en13081929
This paper holds a critical review of current research activities dealing with smart architectural glazing worldwide. Hereafter, the main trends are analyzed and critically reported, with open issues, challenges, and opportunities, providing an accurate description of technological evolution of devices in time. This manuscript deals with some well-known, highly performing technologies, such as semitransparent photovoltaics and novel photoelectrochromic devices, the readiest, probably, to reach the final stage of development, to disclose the manifold advantages of multifunctional, smart glazing. The complex, overall effects of their building integration are also reported, especially regarding energy balance and indoor visual comfort in buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:National Documentation Centre (EKT) CATALDO PIERRI; PAOLO COLANGELO; MICHELA DEL PASQUA; CATERINA LONGO; ADRIANA GIANGRANDE;doi: 10.12681/mms.19732
handle: 11586/247530
Filter feeding invertebrates are a relevant component of fouling assemblages with a pivotal role in ecological processes, since they improve water quality, enhance habitat heterogeneity and transfer organic matter from the water column to the benthos. They modulate the availability of resources to other species, with effects on the density and behavior of the surrounding macrofauna. The fanworm Sabella spallanzanii, one of the largest and most abundant Mediterranean filter feeders, provides a shelter for predation and a secondary substrate for algae and settlement for sessile invertebrates. We tested its role in driving the structure of fouling assemblages, through a removal experiment.The experiment was one-year-long, with four sampling times. The effect of the removal on the fouling community was marginal in terms of species richness and evenness, while the biomass showed important differences, with a constant increase over time with higher values in the samples containing S. spallanzanii. At the end of observations, the biomass reached the value of 3917 g DW m-2 in controls and 2073 g DW m-2 in treatments. The empty space left by fanworms was not used by other species with similar biomasses. It is possible that the functioning of fouling communities may, in the event of loss of species, fluctuate in terms of biomass mobilization to different compartments, either towards the pelagic compartment or to the detritus chain. In systems with reduced water turnover, this by-pass can have important consequences in terms of stability and ecological balance.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11586/247530Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12681/mms.19732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11586/247530Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12681/mms.19732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu