Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecosphere
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecosphere
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Localized carry‐over effects of pond drying on survival, growth, and pathogen defenses in amphibians

Authors: Emily H. Le Sage; Michel E. B. Ohmer; Brandon C. LaBumbard; Karie A. Altman; Laura K. Reinert; Jeffery G. Bednark; Molly C. Bletz; +10 Authors

Localized carry‐over effects of pond drying on survival, growth, and pathogen defenses in amphibians

Abstract

AbstractClimate change is increasing variability in precipitation patterns in many parts of the globe. Unpredictable changes in water availability can be particularly challenging for organisms that rely on precipitation‐fed water sources for completing their life cycle, such as many amphibian species. Although developmental plasticity can mitigate the impacts of changing environments for some species, this strategy can come at a cost to other fitness‐linked traits, such as immune function. We investigated localized variation in the capacity to respond to pond drying and evaluated whether developmental responses induced carry‐over effects in disease susceptibility in three leopard frog species (Rana [Lithobates] pipiens and Rana sphenocephala; two populations each, and one population of Rana chiricahuensis). Using mesocosms located near the site of collection (<15 km away) in five regions spanning a latitudinal gradient, we raised tadpoles under simulated fast drying, slow drying, or constant water levels. After metamorphosis, we characterized several aspects of the skin microbiome, immune function, and response to exposure to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Note that for R. chiricahuensis, the only carry‐over effect measured was response to Bd exposure, for which we observed no effects of pond drying. We found that developmental plasticity in response to drying was rare, except in the southernmost population of R. sphenocephala. In this location, tadpoles responded by accelerating development, and frogs with shorter larval periods developed more severe infections following Bd exposure post‐metamorphosis, suggesting a trade‐off between surviving pond drying and pathogen defense investment. In the three other locations, a lack of accelerated metamorphosis in drying treatments was accompanied by increased mortality, decreased anti‐Bd function of the microbiome, and/or greater Bd infection after exposure. Overall, results suggest that faster drying conditions will likely have negative impacts on amphibians with long larval periods, both directly and indirectly via carry‐over effects. Because effects of drying exposure were not uniform within a species, our findings suggest that local responses may not be generalizable to other regions of the range. These multifaceted effects of climate change on pathogen defenses are increasingly relevant as emerging infectious diseases threaten global biodiversity.

Keywords

Ecology, infectious disease, microbiome, carry‐over effects, chytridiomycosis, climate change, intraspecific variation, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold