
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climatic anomalies may create a long‐lasting ecological phase shift by altering the reproduction of a foundation species

The resilience of ecological communities is often defined by one or a few species that have disproportionately important roles influencing many other species in the community. This is true for some areas of the Mediterranean Sea that are characterized by large brown fucoid algae in the genus Cystoseira that form dense underwater forests structurally similar to the giant kelps of the Pacific. While shorter than the giant kelp, Cystoseira form dense underwater stands, contributing to the three‐dimensional complexity of the seascape (Fig. 1). These canopy‐forming seaweeds play a crucial role in primary production and nutrient cycling of temperate coastal ecosystems from the Mediterranean Sea to the Atlantic Ocean (Mineur et al., 2015) and act as ‘ecosystem engineers', providing food, nursery, and shelter for a rich associated biota. Our study highlighted potential disruptive effects of winter hot spells on reproductive timing, recruitment, and adult survival that could severely affect the persistence of Cystoseira populations. Because extreme climate episodes are increasing in intensity and frequency, implementing coordinated initiatives connecting centers for climate alerts and algologists may shed light on how these phenomena impact population dynamics of Cystoseira species, and help current attempts to restore algal forests.
heat wave, Cystoseira, Ecology, Climate Change, Fucale, Forests, phenology, climate change, Algal forest, Mediterranean Sea, Algal forests; climate change; Cystoseira; Fucales; heat waves; Mediterranean Sea; phenology, Ecosystem
heat wave, Cystoseira, Ecology, Climate Change, Fucale, Forests, phenology, climate change, Algal forest, Mediterranean Sea, Algal forests; climate change; Cystoseira; Fucales; heat waves; Mediterranean Sea; phenology, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
