Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2021
Data sources: Datacite
Ecology
Article . 2021
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co‐occurrence history increases ecosystem stability and resilience in experimental plant communities

Authors: Owen L. Petchey; Cameron Wagg; Cameron Wagg; Nico Eisenhauer; Bernhard Schmid; Sofia J. van Moorsel; Sofia J. van Moorsel; +2 Authors

Co‐occurrence history increases ecosystem stability and resilience in experimental plant communities

Abstract

AbstractUnderstanding factors that maintain ecosystem stability is critical in the face of environmental change. Experiments simulating species loss from grassland have shown that losing biodiversity decreases ecosystem stability. However, as the originally sown experimental communities with reduced biodiversity develop, plant evolutionary processes or the assembly of interacting soil organisms may allow ecosystems to increase stability over time. We explored such effects in a long‐term grassland biodiversity experiment with plant communities with either a history of co‐occurrence (selected communities) or no such history (naïve communities) over a 4‐yr period in which a major flood disturbance occurred. Comparing communities of identical species composition, we found that selected communities had temporally more stable biomass than naïve communities, especially at low species richness. Furthermore, selected communities showed greater biomass recovery after flooding, resulting in more stable post‐flood productivity. In contrast to a previous study, the positive diversity–stability relationship was maintained after the flooding. Our results were consistent across three soil treatments simulating the presence or absence of co‐selected microbial communities. We suggest that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short‐term evolution. A history of co‐occurrence can in part compensate for species loss, as can high plant diversity in part compensate for the missing opportunity of such adaptive adjustments.

Country
Switzerland
Keywords

Ecology, UFSP13-8 Global Change and Biodiversity, Evolution, Biodiversity, Plants, Grassland, 10127 Institute of Evolutionary Biology and Environmental Studies, 10122 Institute of Geography, 1105 Ecology, Evolution, Behavior and Systematics, Behavior and Systematics, 570 Life sciences; biology, 590 Animals (Zoology), Biomass, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 1%
Green
bronze