
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wind climate estimation using WRF model output: method and model sensitivities over the sea

doi: 10.1002/joc.4217
handle: 11343/50970
High-quality tall mast and wind lidar measurements over the North and Baltic Seas are used to validate the wind climatology produced from winds simulated by the Weather, Research and Forecasting (WRF) model in analysis mode. Biases in annual mean wind speed between model and observations at heights around 100 m are smaller than 3.2% at offshore sites, except for those that are affected by the wake of a wind farm or the coastline. These biases are smaller than those obtained by using winds directly from the reanalysis. We study the sensitivity of the WRF-simulated wind climatology to various model setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface temperature used as lower boundary conditions. Also, the strength and form (grid vs spectral) of the nudging is quite irrelevant for the mean wind speed at 100 m. Large sensitivity is found to the choice of boundary layer parametrization, and to the length of the period that is discarded as spin-up to produce a wind climatology. It is found that the spin-up period for the boundary layer winds is likely larger than 12 h over land and could affect the wind climatology for points offshore for quite a distance downstream from the coast.
- University of Melbourne Australia
- Technical University of Denmark Denmark
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).129 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
