
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design for Values in Agricultural Biotechnology
Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have been provided to promote the development of this new technology. The applications of biotechnology raise a whole range of value issues, like consumer and farmer autonomy, respect for intellectual property, environmental sustainability, food security, social justice, and economic growth. Hitherto the field has not yet witnessed any deliberate attempt at value-sensitive design or design for values. The reason is that under the influence of strong commercial motivations, applications have been developed first and foremost with simple agronomic aims in view, such as herbicide tolerance and insect resistance, traits which are based on single genes. The opportunities for value-sensitive design appear to be constrained by the special character of the biological domain. Many desirable traits like drought tolerance are genetically complex traits that cannot be built into organisms by the insertion of one or a few genes. Another problem is that nature tends to fight back, so that insects become immune to insect-resistant crops and weeds become invulnerable to herbicides. This leads to the phenomenon of perishable knowledge, which also calls the so-called patent bargain into question. The possibilities for value-sensitive design will likely increase with synthetic biology, a more advanced form of biotechnology that aims at making biology (more) “easy to engineer.” Practitioners of this new field are acutely aware of the need to proceed in a socially responsible way so as to ensure sufficient societal support. Yet synthetic biologists are currently also engaged in a fundamental debate on whether they will ultimately succeed in tackling biological complexity.
- Wageningen University & Research Netherlands
Trade-offs, Perishable knowledge, Sustainability, Intellectual property, Complex traits, Synthetic biology
Trade-offs, Perishable knowledge, Sustainability, Intellectual property, Complex traits, Synthetic biology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
