Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adapting Sheep Production to Climate Change

Authors: Sejian, Veerasamy; Bhatta, Raghavendra; Gaughan, John; Malik, Pradeep Kumar; Naqvi, S. M.K.; Lal, Rattan;

Adapting Sheep Production to Climate Change

Abstract

Apart from contributing to the climate change phenomenon, sheep production system is also sensitive to its adverse impacts. This poses a great challenge for developing sheep sector around the world. Currently the economic viability of the sheep production system worldwide is jeopardized due to the devastating effects of climate change. Among the multiple climatic stresses faced by sheep, heat stress seems to hugely destabilize production efficiency of the animals. Heat stress jeopardizes the growth, wool, meat and milk production in sheep. Further, climate change leads to several vector borne diseases to sheep by compromising the immune status of the animals. The animal employs several adaptive mechanisms to maintain homeostasis through behavioural, physiological, neuroendocrine, cellular and molecular responses to cope up to the existing climatic condition. Sheep also significantly contributes to climate change through enteric methane emission and manure management. Further, climate change can alter the rumen function and diet digestibility in sheep. Hence, enteric methane mitigation is of paramount importance to prevent both the climate change and dietary energy loss which may pave way for sustaining the economic return from these animals. Further, various other strategies are required to counter the detrimental effects of climate change on sheep production. The management strategies can be categorized as housing management, animal management and monitoring of climate, and these strategies are ultimately targeted to provide suitable microclimate for optimum sheep production. Nutritional interventions involving season-specific feeding and micronutrient supplementation may help the animal to sustain its production during adverse environmental conditions. Body condition scoring system developed specifically for sheep may help to optimize economic return in sheep farms by minimizing the input costs. Finally, sufficient emphasis must be given to develop appropriate adaptation strategies involving policymakers. These strategies include developing thermotolerant breeds using biomarkers, ensured water availability, women empowerment, early warning system and capacity building programmes for all the stakeholders. These efforts may help in augmenting sheep production in the climate change scenario.

Country
Australia
Keywords

Thermotolerance, 2300 Environmental Science, Sheep, Sprinkling, Heat stress, 630, 2200 Engineering, 1100 Agricultural and Biological Sciences, Housing, Climate change, Adaptation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%