Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microbial Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microbial Ecology
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divergent Responses of Soil Fungi Functional Groups to Short-term Warming

Authors: Jinbo, Xiong; Haiyan, Chu; Huaibo, Sun; Xian, Xue; Fei, Peng; Huayong, Zhang;

Divergent Responses of Soil Fungi Functional Groups to Short-term Warming

Abstract

Soil fungi fill pivotal ecological roles in biogeochemical processes, particularly dominating decomposition of lignin. Little is known, however, about the responses of different fungal groups to climate warming with respect to bacteria. In this study, using barcode pyrosequencing, we showed that short-term (15 months) of field exposure of an alpine meadow to warming (elevated 1 and 2 °C) did not markedly alter the overall soil fungal community structures and α-diversity on Tibetan Plateau, but the average β-diversity dramatically decreased in response to warming. However, soil respiration rates were stimulated in the growing season, which significantly (P < 0.001) correlated with soil temperature. Particularly, warming triggered dramatic shifts in the community structure of dominate Ascomycota and rare taxa (relative abundance < 0.1 %). In addition, the abundances of specific Basidiomycota-affiliated members significantly increased, while Ascomycota showed a range of responses to warming. Collectively, we conclude that the fungal communities are resistant to short-term warming, though variations are observed in certain species and rare taxa. This report indicates that changes in a relatively small subset of the soil fungal community are sufficient to produce substantial changes in function, such as CO(2) efflux rates.

Related Organizations
Keywords

Hot Temperature, Basidiomycota, Climate Change, Molecular Sequence Data, Fungi, Tibet, RNA, Ribosomal, 18S, DNA Barcoding, Taxonomic, Seasons, Soil Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 1%
Top 10%
Top 10%