Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2013
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A core set of metabolite sink/source ratios indicative for plant organ productivity in Lotus japonicus

Authors: Thomas Fester; Ingo Fetzer; Claus Härtig;

A core set of metabolite sink/source ratios indicative for plant organ productivity in Lotus japonicus

Abstract

Plant growth is an important process in physiological as well as ecological respect and a number of metabolic parameters (elemental ratios as well as steady-state levels of individual metabolites) have been demonstrated to reflect this process on the whole plant level. Since plant growth is highly localized and is the result of a complex interplay of metabolic activities in sink and source organs, we propose that ratios in metabolite levels of sink and source organs are particularly well suited to characterize this process. To demonstrate such a connection, we studied organ-specific metabolite ratios from Lotus japonicus treated with mineral nutrients, salt stress or arbuscular mycorrhizal fungi. The plants were displaying a wide range of biomass and of flower/biomass ratios. In the analysis of our data we looked for correlations between shifts in sink/source metabolite ratios and plant productivity (biomass accumulated at the time of harvest). In addition we correlated shifts in metabolite ratios comparing competing generative and vegetative sink organs with shifts in productivity of the two organs (changes in flower/biomass ratios). In our analyses we observed clear shifts of carbohydrates and of compounds connected to nitrogen metabolism in favour of sink organs of particularly high productivity. These shifts were in agreement with general differences in metabolite steady-state levels when comparing sink and source organs. Our findings suggest that differentiation of sink and source organs during sampling for metabolomic experiments substantially increases the amount of information obtained from such experiments.

Keywords

Analysis of Variance, Principal Component Analysis, Flowers, Sodium Chloride, Fruit, Mycorrhizae, Host-Pathogen Interactions, Lotus, Metabolome, Metabolomics, Biomass, Fertilizers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average