Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Natural variance in salt tolerance and induction of starch accumulation in duckweeds

Authors: Eric Lam; Kai Adelmann; Cyrus Garcia; K. Sowjanya Sree; Klaus-J. Appenroth;

Natural variance in salt tolerance and induction of starch accumulation in duckweeds

Abstract

Ten of 34 tested duckweed clones showed relatively higher salt tolerance. Salinity stress induced high level of starch accumulation in these clones, making them potential feedstock candidates for biofuel production. Duckweeds are promising as a new generation of crop plants that requires minimal input while providing fast biomass production. Two important traits of interest that can impact on the economic viability of this system are their sensitivity to salt and the starch content of the harvested duckweed. We have surveyed 33 strains of duckweed selected from across all 5 genera and amongst 13 species to quantify the natural variance of these traits. We found that there are large ranges of intraspecific variations in salt tolerance, while all species examined accumulated more starch in response to the initial stages of salt stress. However, the magnitude of the change in starch content varied widely between strains. Our results suggest that specific duckweed clones can be cultivated under relatively saline conditions, while increasing salt in the medium before harvesting could be used to increase starch in duckweed biomass for bioethanol production.

Keywords

Genetic Variation, Starch, Salt Tolerance, Sodium Chloride, Clone Cells, Stress, Physiological, Araceae, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 1%
Top 10%
Top 10%
bronze