Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oecologia
Article . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drier climate shifts leaf morphology in Amazonian trees

Authors: Juliana Stropp; Janisson W. dos Santos; Isiane M. dos Santos; Jhonatan Guedes dos Santos; Thainá L. P. Silva; Richard J. Ladle; Richard J. Ladle; +4 Authors

Drier climate shifts leaf morphology in Amazonian trees

Abstract

The humid forests of Amazonia are experiencing longer and more intense dry seasons, which are predicted to intensify by the end of the 21st century. Although tree species often have long generation times, they may still have the capacity to rapidly respond to changing climatic conditions through adaptive phenotypic plasticity. We, therefore, predicted that Amazonian trees have shifted their leaf morphology in response to the recent drier climate. We tested this prediction by analysing historical herbarium specimens of six Amazonian tree species collected over a 60-year period and comparing changes in leaf morphology with historical precipitation data. Moreover, we explored spatial and temporal biases in herbarium specimens and accounted for their potentially confounding effect in our analysis. We found pronounced biases in herbarium specimens, with nearly 20% of specimens collected in close geographic proximity and around the 1975s. When accounting for such biases, our results indicate a trend of decreasing leaf size after the 1970s, which may have been spurred by an observed reduction in rainfall. Our findings support the hypothesis that (some) Amazonian trees have the capacity to adaptively change their leaf phenotypes in response to the recent drier climate. Nevertheless, the unavoidable spatial and temporal biases in herbarium specimens call for caution when generalizing our findings to all Amazonian trees.

Keywords

Plant Leaves, Climate, Climate Change, Seasons, Forests, Trees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average