Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Biometeorology
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigating the impact of climate change on crop phenological events in Europe with a phenology model

Authors: Galina Churkina; Shaoxiu Ma; K. Trusilova;

Investigating the impact of climate change on crop phenological events in Europe with a phenology model

Abstract

Predicting regional and global carbon and water dynamics requires a realistic representation of vegetation phenology. Vegetation models including cropland models exist (e.g. LPJmL, Daycent, SIBcrop, ORCHIDEE-STICS, PIXGRO) but they have various limitations in predicting cropland phenological events and their responses to climate change. Here, we investigate how leaf onset and offset days of major European croplands responded to changes in climate from 1971 to 2000 using a newly developed phenological model, which solely relies on climate data. Net ecosystem exchange (NEE) data measured with eddy covariance technique at seven sites in Europe were used to adjust model parameters for wheat, barley, and rapeseed. Observational data from the International Phenology Gardens were used to corroborate modeled phenological responses to changes in climate. Enhanced vegetation index (EVI) and a crop calendar were explored as alternative predictors of leaf onset and harvest days, respectively, over a large spatial scale. In each spatial model simulation, we assumed that all European croplands were covered by only one crop type. Given this assumption, the model estimated that the leaf onset days for wheat, barley, and rapeseed in Germany advanced by 1.6, 3.4, and 3.4 days per decade, respectively, during 1961-2000. The majority of European croplands (71.4%) had an advanced mean leaf onset day for wheat, barley, and rapeseed (7.0% significant), whereas 28.6% of European croplands had a delayed leaf onset day (0.9% significant) during 1971-2000. The trend of advanced onset days estimated by the model is similar to observations from the International Phenology Gardens in Europe. The developed phenological model can be integrated into a large-scale ecosystem model to simulate the dynamics of phenological events at different temporal and spatial scales. Crop calendars and enhanced vegetation index have substantial uncertainties in predicting phenological events of croplands. Caution should be exercised when using these data.

Keywords

Crops, Agricultural, Climate Change, Brassica rapa, Hordeum, Models, Theoretical, Europe, Plant Leaves, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%