Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Industrial Microbiology and Biotechnology
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Partial deletion ofrng(RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenicEscherichia coliRM10

Authors: Chris Finan; Andrew Iverson; Erin Garza; Ryan Manow; Ryan Manow; Yongze Wang; Shengde Zhou; +3 Authors

Partial deletion ofrng(RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenicEscherichia coliRM10

Abstract

AbstractPreviously, a native homoethanol pathway was engineered in Escherichia coli B by deletions of competing pathway genes and anaerobic expression of pyruvate dehydrogenase (PDH encoded by aceEF-lpd). The resulting ethanol pathway involves glycolysis, PDH, and alcohol dehydrogenase (AdhE). The E. coli B-derived ethanologenic strain SZ420 was then further improved for ethanol tolerance (up to 40 g l−1 ethanol) through adaptive evolution. However, the resulting ethanol tolerant mutant, SZ470, was still unable to complete fermentation of 75 g l−1 xylose, even though the theoretical maximum ethanol titer would have been less than 40 g l−1 should the fermentation have reached completion. In this study, the cra (encoding for a catabolite repressor activator) and the HSR2 region of rng (encoding for RNase G) were deleted from SZ470 in order to improve xylose fermentation. Deletion of the HSR2 domain resulted in significantly increased mRNA levels (47-fold to 409-fold) of multiple glycolytic genes (pgi, tpiA, gapA, eno), as well as the engineered ethanol pathway genes (aceEF-lpd, adhE) and the transcriptional regulator Fnr (fnr). The higher adhE mRNA level resulted in increased AdhE activity (>twofold). Although not measured, the increase of other mRNAs might also enhance expressions of their encoding proteins. The increased enzymes would then enable the resulting strain, RM10, to achieve increased cell growth and complete fermentation of 75 g l−1 xylose with an 84% improved ethanol titer (35 g l−1), compared to that (19 g l−1) obtained by the parent, SZ470. However, deletion of cra resulted in a negative impact on cell growth and xylose fermentation, suggesting that Cra is important for long-term fermentative cell growth.

Related Organizations
Keywords

Xylose, Ethanol, Escherichia coli Proteins, Arabinose, Industrial Microbiology, Endoribonucleases, Fermentation, Escherichia coli, RNA, Messenger, Metabolic Networks and Pathways

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
gold
Published in a Diamond OA journal