Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Newcastle University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Biology of Fishes
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Warmer temperature decreases the maximum length of six species of marine fishes, crustacean, and squid in New Zealand

Authors: Charles P. Lavin; Cesc Gordó-Vilaseca; Fabrice Stephenson; Zhiyuan Shi; Mark John Costello;

Warmer temperature decreases the maximum length of six species of marine fishes, crustacean, and squid in New Zealand

Abstract

Abstract As global oceans continue to warm and deoxygenate, it is expected that marine ectotherms will reduce in body size resulting from the interactive effects of temperature and dissolved oxygen availability. A temperature-size response describes how wild populations of ectothermic species grow faster and reach a smaller size within warmer temperatures. While temperature-size responses are well observed in marine ectotherms, the mechanisms underpinning such a reduction in body size remain debated. Here, we analyse the relative influence of temperature, dissolved oxygen concentration, and geographic location (which encompasses multiple latent variables), on the maximum body length of four fish, one crustacean, and one squid species, which inhabit shallow to deep sea (1000 m) New Zealand waters across a temperature gradient of 1.5 to 18 °C. We found that all study species displayed a temperature-size response, with the strongest response exhibited by the largest species, hoki (Macruronus novaezelandiae). We also found that temperature was more important than dissolved oxygen concentration in determining maximum body length, as dissolved oxygen levels were at or near saturation in the study area. Our results suggest that larger-bodied species may experience the strongest temperature-size responses, and support expectations from the gill-oxygen limitation theory (GOLT) and the oxygen and capacity limited thermal tolerance (OCLTT) concept that increases in oxygen demand may be size- and temperature-dependent, thus driving a reduction in maximum body length of marine ectotherms with warming.

Countries
United Kingdom, Norway
Keywords

Climate change, VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412, VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497, VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Zoofysiologi og komparativ fysiologi: 483

1 Data sources, page 1 of 1
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid