Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Systems ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environment Systems & Decisions
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using participatory modeling processes to identify sources of climate risk in West Africa

Authors: Laura Schmitt Olabisi; Saweda Liverpool-Tasie; Louie Rivers; Arika Ligmann-Zielinska; Jing Du; Riva Denny; Sandra Marquart-Pyatt; +1 Authors

Using participatory modeling processes to identify sources of climate risk in West Africa

Abstract

Participatory modeling has been widely recognized in recent years as a powerful tool for dealing with risk and uncertainty. By incorporating multiple perspectives into the structure of a model, we hypothesize that sources of risk can be identified and analyzed more comprehensively compared to traditional ‘expert-driven’ models. However, one of the weaknesses of a participatory modeling process is that it is typically not feasible to involve more than a few dozen people in model creation, and valuable perspectives on sources of risk may therefore be absent. We sought to address this weakness by conducting parallel participatory modeling processes in three countries in West Africa with similar climates and smallholder agricultural systems, but widely differing political and cultural contexts. Stakeholders involved in the agricultural sector in Ghana, Mali, and Nigeria participated in either a scenario planning process or a causal loop diagramming process, in which they were asked about drivers of agricultural productivity and food security, and sources of risk, including climate risk, between the present and mid-century (2035–2050). Participants in all three workshops identified both direct and indirect sources of climate risk, as they interact with other critical drivers of agricultural systems change, such as water availability, political investment in agriculture, and land availability. We conclude that participatory systems methods are a valuable addition to the suite of methodologies for analyzing climate risk and that scientists and policy-makers would do well to consider dynamic interactions between drivers of risk when assessing the resilience of agricultural systems to climate change.

Country
India
Keywords

Participatory Modeling, 330, Climate Risk, Climate Change, 910, Food Security, West Africa, African Agriculture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
bronze