Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hydrobiologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrobiologia
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fish shift the feeding behaviour and trophic niche diversification of their prey in subarctic Lake Mývatn, Iceland

Authors: Torben L. Lauridsen; Erik Jeppesen; Serena Sgarzi; Mireia Bartrons; Sandra Brucet; Sandra Brucet; Sandra Brucet; +5 Authors

Fish shift the feeding behaviour and trophic niche diversification of their prey in subarctic Lake Mývatn, Iceland

Abstract

Fish can alter food web structure through trophic cascades. While most studies conducted in oligotrophic subarctic lakes show strong top–down control on consumers in the presence of fish, several studies undertaken in eutrophic subarctic Lake Mývatn, Iceland, suggest that it is consumer–resource interactions that drive the whole-lake community. Here, we used stable isotopes of carbon and nitrogen from the main food web compartments derived from a 3-month in situ-controlled mesocosm experiment involving two treatments (with and without fish) with three replicates each to determine the effects of fish on the trophic structure of the Lake Mývatn food web. We found that the whole food web trophic structure shifted towards the upper part of the water column (more planktonic habitat) in fishless enclosures. Additionally, the trophic niche of organisms occupying the base of the food web became more diversified when fish were absent, and the trophic redundancy of all taxa decreased (more dissimilar trophic niches). Stronger top–down effects may also result from global warming, producing increased abundance of planktivorous fish in subarctic lakes. Our results indicate that this could lead to a shift in trophic niche and reduced trophic diversity of most food web organisms.

Keywords

Trophic cascades, Food webs, Climate change, Predation, Stable isotopes, Subarctic lakes

Powered by OpenAIRE graph
Found an issue? Give us feedback