Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exogenous melatonin reduces water deficit-induced oxidative stress and improves growth performance of Althaea rosea grown on coal mine spoils

Authors: Ghulam Rabbany; Ghulam Rabbany; Tanwne Sarker; Shirin Sultana; Milon Barmon; Dario Fornara; Naheeda Begum; +2 Authors

Exogenous melatonin reduces water deficit-induced oxidative stress and improves growth performance of Althaea rosea grown on coal mine spoils

Abstract

Coal mining activities are responsible for significant land degradation and often long-term irreversible effects on ecosystem functioning. To better understand how coal mined sites could be re-vegetated and ecosystem functioning restored, we address the role of the signalling hormone melatonin, which controls plant growth and development under adverse environmental conditions. We assessed the effects of exogenous melatonin on the plant species Althaea rosea by measuring morphological growth attributes, photosynthetic efficiency, reactive oxygen species (ROS)-induced oxidative damage and antioxidant defence developed by the seedlings when grown on coal-mined spoils under various water regimes. Water deficit and negative effects of coal mine spoils significantly decreased morphological growth attributes (i.e. plant height, root length and dry biomass), gas-exchange traits (i.e. net photosynthesis rate, inter intercellular concentration of CO2, transpiration rate, stomatal conductance and water use efficiency) and photosynthetic pigments (chlorophyll and carotenoid contents) by increasing the ROS-induce oxidative damage and decreasing antioxidant enzyme activities of A. rosea seedlings. However, melatonin applications increased photosynthetic performance and antioxidant enzyme activities and decreased hydrogen peroxide and malondialdehyde contents and ultimately improved growth performance of A. rosea in coal-mined spoils. Overall, our findings show how the application of optimum water (63.0 %field capacity equivalent to 1.67 mm day-1) and melatonin (153.0 μM dose) significantly improves the re-vegetation of coal-mined spoils with A. rosea. Our study provides new insight into melatonin-mediated water stress tolerance in A. rosea grown on coal-mined spoils, and this strategy could be implemented in re-vegetation programmes of coal mine-degraded areas under arid and semiarid conditions of the north-western part of China and perhaps across other arid areas worldwide.

Keywords

Dehydration, Antioxidants, Althaea, Oxidative Stress, Coal, Seedlings, Photosynthesis, Reactive Oxygen Species, Malvaceae, Ecosystem, Melatonin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
bronze