Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Life Cycle Assessment
Article . 2021 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Method to decompose uncertainties in LCA results into contributing factors

Authors: Yuwei Qin; Yuwei Qin; Sangwon Suh;

Method to decompose uncertainties in LCA results into contributing factors

Abstract

Understanding uncertainty is essential in using life cycle assessment (LCA) to support decisions. Monte Carlo simulation (MCS) is widely used to characterize the variability in LCA results, be them life cycle inventory (LCI), category indicator results, normalized results, or weighted results. In this study, we present a new method to decompose MCS results into underlying contributors using the logarithmic mean Divisia index (LMDI) decomposition method with a case study on natural gas focusing on two impact categories: global warming and USETox human health impacts. First, after each run of MCS, the difference in simulated and deterministic results is decomposed using the LMDI decomposition method, which returns the contribution of each factor to the difference of the run. After repeating this for 1000 MCS runs, the statistical properties of the contributions by each factor are analyzed. The method quantifies the contribution of underlying variables, such as characterization factors and LCI items, to the overall variability of the result, such as characterized results. The method presented can decompose the variabilities in LCI, characterized, normalized, or weighted results into LCI items, characterization factors, normalization references, weighting factors, or any subset of them. As an illustrative example, a case study on natural gas LCA was conducted, and the variabilities in characterized results were decomposed into underlying LCI items and characterization factors. The results show that LCI and characterization phases contribute 65% and 35%, respectively, to the uncertainty of the characterized result for global warming. For the human health impact category, LCIs and characterization factors contribute 32% and 68%, respectively, to the overall uncertainty. In particular, methane emissions in LCI contributed the most to the overall uncertainties in global warming impact, while the characterization factor of chromium was identified as the main driver of the overall uncertainties in human health impact of natural gas. Using this approach, LCA practitioners can decompose the overall variability in the results to the underlying contributors under the MCS setting, which can help prioritize the parameters that need further refinement to reduce overall uncertainty in the results. The method reliably estimates the uncertainty contributions of the variables with large variabilities without the need for large computational resources, and it can be applied to any stage of an LCA calculation including normalization and weighting, or to other fields than LCA such as material flow analysis and risk assessment.

Country
United States
Keywords

Environmental Engineering, Prevention, Materials Engineering, LMDI method, Life cycle assessment, Uncertainty analysis, Uncertainty contribution, Building, Monte Carlo simulation, Environmental Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
bronze