Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste and Biomass Valorization
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rice Husk Ash (RHA) Recycling in Brick Manufacture: Effects on Physical and Microstructural Properties

Authors: F. Andreola; I. Lancellotti; T. Manfredini; F. Bondioli; L. Barbieri;

Rice Husk Ash (RHA) Recycling in Brick Manufacture: Effects on Physical and Microstructural Properties

Abstract

In this study RHA was used as silica source in the obtainment of clay bricks. Different compositions were prepared, substituting the clays with diverse percentages of RHA (0–20 wt%) and requested water contents. The pastes obtained were extruded in laboratory, dried and then fired in an industrial camera kiln. Technological tests were performed after drying (linear shrinkage and naphtha absorption) and firing [(24-h immersion) water absorption, linear shrinkage, weight loss, average flexural strength] steps. Besides, to analyze the effect on the microstructure and mineralogy, SEM/EDS and XRD analysis of the fired bricks were performed. From the tests conducted it is possible to note that RHA content contributes to reduce the linear shrinkage during drying while an opposite effect is observed for the water absorption. Regarding mechanical test, the products containing up to 5 wt% of RHA are in according to the recommended values for roof. Bricks containing higher amounts of RHA could be used in building manufacturing (light weighted faced load bearing walls) where moderate strengths and penetration protection (porosity/permeability) are required. The carbon unburned present in the RHA contributes to increase the final porosity and the weight loss of the bricks.

Country
Italy
Keywords

690, Environmental Engineering, Sustainability and the Environment, Clay brick, Ceramics; Clay bricks; Rice husk ash (RHA); Environmental Engineering; Renewable Energy; Sustainability and the Environment; Waste Management and Disposal, Rice husk ash (RHA), Ceramic, 620, Rice husk ash (RHA) · Ceramics · Clay bricks, Renewable Energy, Waste Management and Disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 120
  • 120
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
35
Top 10%
Top 10%
Top 10%
120