
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia

Abstract Climate change is not a myth. There is enough evidence to showcase the impact of climate change. Town planners and authorities are looking for potential models to predict the climatic factors in advance. Being an agricultural area in Saudi Arabia, Tabuk region gets greater interest in developing such a model to predict the atmospheric temperature.Therefore, this paper presents two different studies based on artificial neural networks (ANNs) and gene expression programming (GEP) to predict the atmospheric temperature in Tabuk. Atmospheric pressure, rainfall, relative humidity and wind speed are used as the input variables in the developed models. Multilayer perceptron neural network model (ANN model), which is high in precession in producing results, is selected for this study. The GEP model that is based on evolutionary algorithms also produces highly accurate results in nonlinear models. However, the results show that the GEP model outperforms the ANN model in predicting atmospheric temperature in Tabuk region. The developed GEP-based model can be used by the town and country planers and agricultural personals. Graphical abstract
- University of the West Indies Jamaica
- University of Tabuk Saudi Arabia
- University of Tabuk Saudi Arabia
- Sri Lanka Institute of Information Technology Sri Lanka
- Sri Lanka Institute of Information Technology Sri Lanka
Artificial neural network, Water supply for domestic and industrial purposes, Atmospheric temperature, Gene expression programming, Climate change, Tabuk, TD201-500
Artificial neural network, Water supply for domestic and industrial purposes, Atmospheric temperature, Gene expression programming, Climate change, Tabuk, TD201-500
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
