Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A bottom gravity current model for CO2-enriched seawater

Authors: Helge Drange; Peter M. Haugan; Guttorm Alendal;

A bottom gravity current model for CO2-enriched seawater

Abstract

Abstract A bottom gravity current model, including chemistry, has been used to study the behaviour of heavy, CO 2 -enriched seawater released on a sloping seabed. The model has been fitted to the emission of CO 2 from a 2 GW gas power plant, and the CO 2 -enriched seawater is released at a depth of 300 m. A plume is modelled for three different areas; the Norwegian Sea, the north Atlantic and the north Pacific. Temperature and salinity profiles have been used to simulate the vertical density gradient for each of the areas. The numerical values of the different model parameters are discussed, and special attention is paid to the bottom friction parameter. It is argued that natural bottom gravity currents need a bottom friction parameter between 0.01 and 0.1, which is one to two orders of magnitude higher than the drag coefficient commonly used in tidal modelling. It is shown that a friction parameter near 0.01 leads to quick dilution of the plume, but that the plume may reach the deep ocean if the friction parameter is near 0.1. Furthermore, it is shown that the density profiles in the Atlantic and Pacific tend to reduce the excess plume density, whereas a plume released at 300 m depth in the Norwegian Sea may transport CO 2 to great depths.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average