
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype

Schedule-induced polydipsia (SIP) is generated by subjecting a highly motivated animal to a sub-optimal rate of food reinforcement while also providing access to a fluid. SIP is one of several adjunctive (or displacement) behaviors that are expressed in an exaggerated form that is deemed 'excessive.' This feature makes SIP an attractive model for studying an excessive ethanol drinking phenotype in rodents. Multiple experimental variables are crucial for the full manifestation of adjunctive drinking, including the degree of food deprivation, the inter-pellet interval selected, and the size of the food reward offered. Although these variables were extensively studied and optimized for water polydipsia in rats, a similarly customized approach to ethanol SIP and application of the procedure in mice have largely been curtailed in favor of the default variable values historically used for water SIP in rats. Further, ethanol SIP also requires careful consideration of variables such as taste and ethanol concentration. Investigation of the stress axis and neurochemical systems such as dopamine and serotonin in mediating adjunctive drinking stemmed from two leading hypotheses regarding the underlying mechanisms of SIP generation: 1) SIP as a coping strategy to mitigate stress associated with the aversive environmental condition, and 2) SIP as a displacement of reward in a highly motivated animal. Ethanol SIP is a powerful model of excessive intake because it can generate an ethanol-dependent state and sustain frequent and intoxicating levels of blood ethanol with voluntary oral consumption. The required food deprivation and the loss of the excessive drinking phenotype following removal of the generator schedule are the two main limitations of the model. Future utility of ethanol SIP will be enhanced by more fully dissecting the underlying hormonal and neurochemical mechanisms and optimizing experimental variables for ethanol SIP on a per species and strain basis.
- Oregon Health & Science University United States
- Oregon Health & Science University United States
- Oregon National Primate Research Center United States
- Oregon National Primate Research Center United States
Alcohol Drinking, Ethanol, Rats, Mice, Phenotype, Reward, Animals, Polydipsia, Food Deprivation
Alcohol Drinking, Ethanol, Rats, Mice, Phenotype, Reward, Animals, Polydipsia, Food Deprivation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
