Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal
Article . 2022
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens

Authors: Mazzoni M.; Zampiga M.; Clavenzani P.; Lattanzio G.; Tagliavia C.; Sirri F.;

Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens

Abstract

Heat stress (HS) dramatically impairs the growth performance of broiler chickens, mainly as a consequence of reduced feed intake due to the loss of appetite. This study was aimed at evaluating the alterations induced by chronic HS conditions on the morphological and morphometric features of the gastrointestinal (GI) tract and on the expression of some enteroendocrine cells (EECs) involved in the regulation of feed intake in chickens. Three hundred male chickens (Ross 308) were divided into two experimental groups and raised either in thermoneutral environment for the whole fattening period (0-41 days) (TNT group) or subjected to chronic HS conditions (30 °C for 24 h/day) from 35 to 41 days (HS group). Samples of proventriculus, duodenum, jejunum and cecum were collected from 24 broilers (12/group). Haematoxylin-eosin was used for the morphometric evaluations, while immunohistochemistry was applied for the evaluation of EECs expressing ghrelin (GHR), cholecystokinin (CCK), neuropeptide Y (NPY), glucagon-like peptide-1 (GLP-1), and serotonin (5-HT). In the proventriculus, HS reduced total wall thickness and mucous layer height (P ≤ 0.01) as well as mean diameter, circumference, and area of the compound tubular glands (P ≤ 0.001) with respect to TNT. The small intestine of HS birds was characterised by decreased villous height and total thickness (duodenum, P ≤ 0.01; jejunum, P ≤ 0.001), whereas crypt depth and width were reduced only in the jejunum (P ≤ 0.01). HS had negligible effects on the morphological aspects of the cecum. In the proventriculus, an increase in GHR and NPY EECs was observed in response to HS (P ≤ 0.001). Similarly, the small intestine villi of the HS group showed greater GLP-1 (P ≤ 0.05), 5-HT (P ≤ 0.001) and CCK (P ≤ 0.01) EECs. Moreover, the expression of 5-HT EECs was higher in the duodenal (P ≤ 0.01) and jejunal (P ≤ 0.01) crypts of HS birds, whereas GLP-1 and CCK EECs increased only in jejunal crypts (P ≤ 0.05). Finally, 5-HT EEC expression was increased in the cecum of HS group (P ≤ 0.01). In conclusion, these outcomes demonstrate that chronic HS induces morphometric alterations not only in the small intestine but also in a key organ such as the proventriculus. Furthermore, HS conditions affect the presence and distribution of EECs, suggesting that some GI peptides and biogenic amine may be implicated in the regulation of appetite and voluntary feed intake in heat-stressed broiler chickens.

Country
Italy
Keywords

Male, Serotonin, Hot Temperature, Thermal stress, Heat Stress Disorders, SF1-1100, Poultry, Eating, Glucagon-Like Peptide 1, Appetite regulation, Climate change, Animals, Appetite regulation; Climate change; Enteroendocrine cell; Poultry; Thermal stress, Animal Feed, Animal culture, Enteroendocrine cell, Cholecystokinin, Chickens, Heat-Shock Response, Appetite regulation; Climate change; Enteroendocrine cell; Poultry; Thermal stress; Animal Feed; Animals; Cholecystokinin; Eating; Glucagon-Like Peptide 1; Heat-Shock Response; Hot Temperature; Male; Serotonin; Chickens; Heat Stress Disorders

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
gold