
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method

In this study, an efficient Bayesian framework equipped with a multivariate adaptive regression spline (MARS) technique is developed to alleviate computational burdens encountered in a conventional Bayesian inversion of a geothermal prospect. Fast MARS models are developed from training dataset generated by CPU-intensive hydrothermal models and used as surrogate of high-fidelity physical models in Markov Chain Monte Carlo (MCMC) sampling. This Bayesian inference with MARS-enabled MCMC method is used to reduce prior estimates of uncertainty in structural or characteristic hydrothermal flow parameters of the model to posterior distributions. A geothermal prospect near Superstition Mountain in Imperial County of California in USA is used to illustrate the proposed framework and demonstrate the computational efficiency of MARS-based Bayesian inversion. The developed MARS models are also used to efficiently drive calculation of Sobol’ total sensitivity indices. Only top sensitive parameters are included in Bayesian inference to further improve the computational efficiency of inversion. Sensitivity analysis also confirms that water circulation through high permeable structures, rather than heat conduction through impermeable granite, is the primary heat transfer method. The presented framework is demonstrated an efficient tool to update knowledge of geothermal prospects by inversing field data. Although only thermal data is used in this study, other type of data, such as flow and transport observations, can be jointly used in this method for underground hydrocarbon reservoirs.
- Sultan Qaboos University Oman
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
- Sultan Qaboos University Oman
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
