Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biocatalysis and Agr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biocatalysis and Agricultural Biotechnology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Environmental impacts of transgenic Bt rice and non-Bt rice cultivars in northern Iran

Authors: Behzad Ghareyazie; Seyyed Hasan Pishgar; Salman Dastan;

Environmental impacts of transgenic Bt rice and non-Bt rice cultivars in northern Iran

Abstract

Abstract In the future, rice production is likely to be impacted by climate change and associated risks including pest complexes and consumption of chemical inputs, thereby decreasing production at a regional scale and one of the major global concerns. In fact, among the biotic stresses, damage caused by insect pests, which can be categorized as either minor or major pests, can severely constrain the potential yield of rice. Hence, planting transgenic rice is considered a solution for reducing environmental and human health impacts. Therefore, in this research, life cycle assessment for environmental and human health impacts of transgenic and non-transgenic rice cultivars was considered. Hence, four transgenic lines (driven from back cross of Khazar cultivar with transgenic line of Tarom Molaii) along with conventional cultivars (non-transgenic parents) were cultivated under the standard of biosafety protocol in three isolated sites in north of Iran in 2016. In order to conducted life cycle assessment, first, the results of each site were analyzed separately, and since there were not differences among the impact categories and indices in different sites, the average for the results of the three sites are being presented. Results show that decreased insecticides application in transgenic cultivars lowers the need for labor, machineries, and fuel, thereby contributing to reduction in use of energy and greenhouse gases emission from construction, transportation and application of inputs during cultivation. Furthermore, most investigated impact categories were obtained high for Tarom Molaii and Khazar and less for three transgenic lines. In addition, the most important categories were non-renewable energy, global warming, aquatic eutrophication, aquatic acidification, terrestrial acid/nutri, land occupation, terrestrial ecotoxicity, ozone layer depletion, ionizing radiation, respiratory inorganics, respiratory organics, cumulative energy demand, ecological footprint, greenhouse gas protocol, water footprint, carcinogens and non-carcinogens. Therefore, according to the findings of this research, it was observed that the emission amount of environmental pollutants has a positive correlation with the consumption of inputs and field management practices.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%