Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Pharmacology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure

Authors: Rivera, Patricia; Fernández Arjona, María del Mar; Silva Peña, Daniel; Blanco Calvo, Eduardo; Vargas, Antonio; López Ávalos, María Dolores; Grondona, Jesús M.; +4 Authors

Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure

Abstract

Changes in endogenous cannabinoid homeostasis are associated with both ethanol-related neuroinflammation and memory decline. Extensive research is still required to unveil the role of endocannabinoid signaling activation on hippocampal microglial cells after ethanol exposure. Either microglial morphology, phenotype and recruitment may become notably altered after chronic alcohol-related neurodegeneration. Here, we evaluated the pharmacological effects of fatty-acid amide-hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg), oleoylethanolamide (OEA, 10 mg/kg), arachidonoylethanolamide (AEA, 10 mg/kg), the CB1 receptor agonist ACEA (3 mg/kg) and the CB2 receptor agonist JWH133 (0.2 mg/kg) administered for 5 days in a rat model of subchronic (2 weeks) ethanol diet (11% v/v) exposure. URB597 turned to be the most effective treatment. URB597 increased microglial (IBA-1+) cell population, and changed morphometric features (cell area and perimeter, roughness, fractal dimension, lacunarity) associated with activated microglia in the hippocampus of ethanol-exposed rats. Regarding innate immune activity, URB597 specifically increased mRNA levels of toll-like receptor 4 (TLR4), glial fibrillary acidic protein (Gfap) and the chemokine stromal cell-derived factor 1 (SDF-1α/CXCL12), and elevated the cell population expressing the chemokine receptors CX3CR1, CCR2 and CCR4 in the ethanol-exposed rat hippocampus. Contrary to ethanol effect, URB597 reduced mRNA levels of Iba-1, Tnfα, IL-6 and the monocyte chemoattractant protein-1 (MCP-1/CCL2), as well as cell population expressing iNOS. URB597 effects on hippocampal immune system were accompanied by changes in short and long-term visual recognition memory. These results suggest that FAAH inhibition may modulates hippocampal microglial recruitment and activation that can be associated with improved hippocampal-dependent memory despite ethanol exposure.

Country
Spain
Keywords

Male, Memory, Long-Term, Gene Expression, Nitric Oxide Synthase Type II, Arachidonic Acids, Hippocampus, Amidohydrolases, Memory, Glial Fibrillary Acidic Protein, Animals, FAAH, Enzyme Inhibitors, Ethanol, Memory, Short-Term, Benzamides, Dentate Gyrus, Cytokines, Carbamates, Microglia, Chemokines, Alcohol, Endocannabinoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research