Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2015
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2015
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors

Authors: D. Warren Raffa; D. Warren Raffa; Pablo Tittonell; A. Bogdanski;

How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors

Abstract

The current advancement of the bioenergy sector along with the need for sustainable agricultural systems call for context-specific crop residue management options - implying variable degrees of removal - across climatic regions, soil types and farming systems around the world. A large database (n=660) on the effects of crop residue management on soil organic carbon (SOC) and crop yields was compiled from studies published in the last decade and analyzed using descriptive and multivariate statistics and data mining techniques. Removing crop residues from the field led to average SOC contents that were 12 and 18% lower than in soils in which crop residues were retained, in temperate and tropical climates respectively. The dataset showed a wide variability as a result of the wide range of biophysical and management factors affecting net changes in SOC. In tropical climates the effect of crop residue management on SOC was subject to local climate and soil texture. In these regions the addition of C via crop residues was crucial in sustaining SOC especially in coarse textured soils. Yields increased following residue retention in tropical soils, while low SOC corresponded with lower crop production in temperate areas. Our results suggest that crop residue removal is not recommended in tropical soils, particularly in coarse-textured ones, and in SOC-depleted soils in temperate locations. Partial residue removal can be considered in temperate climates when soils are well-endowed in SOC. Future policies must consider the role of residues within different agro-ecosystems in order to advance agriculture and the bio-energy sector sustainably.

Country
Netherlands
Keywords

Sustainable agriculture, Soil fertility, CART, Bioenergy, Biomass, Crop production

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%