Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review

Authors: Petr Baldrian; Antje C. Spiess; Antje C. Spiess; Said Benallaoua; Aicha Asma Houfani; Aicha Asma Houfani; Aicha Asma Houfani; +1 Authors

Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review

Abstract

Abstract Lignocellulose, the most abundant and renewable resource on Earth is an important raw material, which can be converted into high value products. However, to this end, it needs to be pretreated physically, chemically, or biologically. Its complex structure and recalcitrance against physical, chemical, or biological degradation render its breakdown an important target of study. The understanding of the enzymatic processes of lignocellulose breakdown and the changes in its chemistry are thus essential. Here, we review the current analytical challenges in the analysis of lignocellulose composition, lignocelluloytic pretreatment, analysis of enzymatic hydrolysis catalyzed by cellulases or hemicellulases and their biotechnological applications. Complex techniques including biochemical, genomic, and metagenomics methods such as high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD), Respiration Activity Monitoring System (RAMOS), and next-generation sequencing are described. HPAEC-PAD is a promising, rapid, and reliable analytical technique for sugar quantification following lignocellulose breakdown. RAMOS is an effective technique for monitoring the growth of microorganisms during the different phases of enzyme production, enzymatic hydrolysis, and fermentation. The emergence of high throughput, next-generation sequencing techniques has enriched the databases of genes encoding glycoside hydrolase classes commonly involved in lignocellulose decomposition, and this knowledge can be readily used to analyse the involved processes. Still, novel analytical methods are highly welcome to understand the complete process of lignocelluloytic breakdown. In order to decrease environmental pollution and to save energy, lignocellulose conversion needs to be promoted in order to effectively compete with fossil resources on a global scale in future.

Country
Czech Republic
Keywords

(hemi)cellulases, (meta)genomics, Lignocellulose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    243
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
243
Top 0.1%
Top 10%
Top 0.1%