Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Construction and Bui...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Construction and Building Materials
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials

Authors: Zunino, Franco; Scrivener, Karen;

Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials

Abstract

Abstract The adoption of blended cements to reduce the carbon footprint has increased significantly over the last decades. Clays containing kaolinite are a promising choice due to their widespread availability. Kaolinite content is the major factor controlling the performance of blended cements incorporating calcined clay, for example in LC3-50 (50% clinker, 30% calcined clay, 15% limestone and 5% gypsum) clays with a kaolinite above about 40% are needed to achieve similar strength to reference OPCs at 7 days. Materials with low contents of kalinite are often considered unsuitable. This study compares two fractionation techniques to increase the kaolinite content of a low-grade clay (30% kaolinite content). The results show that kaolinite remains concentrated in the fine particles after grinding. Both wet sedimentation and air separation were effective to increase the reactivity of the material as a combined result of increased fineness and kaolinite content. For the air separation process, it was observed that a significant amount of kaolinite remained in the rejected fraction after processing due to agglomeration of the powder. It was shown that the use of grinding aids before the separation process can further improve the results.

Country
Switzerland
Keywords

cement, metakaolin, pozzolan, grinding aids, sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%